ﻻ يوجد ملخص باللغة العربية
Federated learning (FL) has emerged as an effective technique to co-training machine learning models without actually sharing data and leaking privacy. However, most existing FL methods focus on the supervised setting and ignore the utilization of unlabeled data. Although there are a few existing studies trying to incorporate unlabeled data into FL, they all fail to maintain performance guarantees or generalization ability in various real-world settings. In this paper, we focus on designing a general framework FedSiam to tackle different scenarios of federated semi-supervised learning, including four settings in the labels-at-client scenario and two setting in the labels-at-server scenario. FedSiam is built upon a siamese network into FL with a momentum update to handle the non-IID challenges introduced by unlabeled data. We further propose a new metric to measure the divergence of local model layers within the siamese network. Based on the divergence, FedSiam can automatically select layer-level parameters to be uploaded to the server in an adaptive manner. Experimental results on three datasets under two scenarios with different data distribution settings demonstrate that the proposed FedSiam framework outperforms state-of-the-art baselines.
Training deep learning models on in-home IoT sensory data is commonly used to recognise human activities. Recently, federated learning systems that use edge devices as clients to support local human activity recognition have emerged as a new paradigm
Federated Semi-Supervised Learning (FedSSL) has gained rising attention from both academic and industrial researchers, due to its unique characteristics of co-training machine learning models with isolated yet unlabeled data. Most existing FedSSL met
Federated Learning allows training machine learning models by using the computation and private data resources of a large number of distributed clients such as smartphones and IoT devices. Most existing works on Federated Learning (FL) assume the cli
Federated learning enables multiple clients, such as mobile phones and organizations, to collaboratively learn a shared model for prediction while protecting local data privacy. However, most recent research and applications of federated learning ass
Federated learning (FL) is a promising way to use the computing power of mobile devices while maintaining the privacy of users. Current work in FL, however, makes the unrealistic assumption that the users have ground-truth labels on their devices, wh