ﻻ يوجد ملخص باللغة العربية
Deep AUC Maximization (DAM) is a new paradigm for learning a deep neural network by maximizing the AUC score of the model on a dataset. Most previous works of AUC maximization focus on the perspective of optimization by designing efficient stochastic algorithms, and studies on generalization performance of large-scale DAM on difficult tasks are missing. In this work, we aim to make DAM more practical for interesting real-world applications (e.g., medical image classification). First, we propose a new margin-based min-max surrogate loss function for the AUC score (named as AUC min-max-margin loss or simply AUC margin loss for short). It is more robust than the commonly used AUC square loss, while enjoying the same advantage in terms of large-scale stochastic optimization. Second, we conduct extensive empirical studies of our DAM method on four difficult medical image classification tasks, namely (i) classification of chest x-ray images for identifying many threatening diseases, (ii) classification of images of skin lesions for identifying melanoma, (iii) classification of mammogram for breast cancer screening, and (iv) classification of microscopic images for identifying tumor tissue. Our studies demonstrate that the proposed DAM method improves the performance of optimizing cross-entropy loss by a large margin, and also achieves better performance than optimizing the existing AUC square loss on these medical image classification tasks. Specifically, our DAM method has achieved the 1st place on Stanford CheXpert competition on Aug. 31, 2020. To the best of our knowledge, this is the first work that makes DAM succeed on large-scale medical image datasets. We also conduct extensive ablation studies to demonstrate the advantages of the new AUC margin loss over the AUC square loss on benchmark datasets. The proposed method is implemented in our open-sourced library LibAUC (www.libauc.org).
Deep AUC (area under the ROC curve) Maximization (DAM) has attracted much attention recently due to its great potential for imbalanced data classification. However, the research on Federated Deep AUC Maximization (FDAM) is still limited. Compared wit
Memorization in over-parameterized neural networks could severely hurt generalization in the presence of mislabeled examples. However, mislabeled examples are hard to avoid in extremely large datasets collected with weak supervision. We address this
Rationale and Objectives: Medical artificial intelligence systems are dependent on well characterised large scale datasets. Recently released public datasets have been of great interest to the field, but pose specific challenges due to the disconnect
Large scale image classification datasets often contain noisy labels. We take a principled probabilistic approach to modelling input-dependent, also known as heteroscedastic, label noise in these datasets. We place a multivariate Normal distributed l
In this paper we consider the problem of maximizing the Area under the ROC curve (AUC) which is a widely used performance metric in imbalanced classification and anomaly detection. Due to the pairwise nonlinearity of the objective function, classical