ﻻ يوجد ملخص باللغة العربية
The notion of an internal preneighbourhood space on a finitely complete category with finite coproducts and a proper $(mathsf{E}, mathsf{M})$ system such that for each object $X$ the set of $mathsf{M}$-subobjects of $X$ is a complete lattice was initiated in cite{2020}. The notion of a closure operator, closed morphism and its near allies investigated in cite{2021-clos}. The present paper provides structural conditions on the triplet $(mathbb{A}, mathsf{E}, mathsf{M})$ (with $mathbb{A}$ lextensive) equivalent to the set of $mathsf{M}$-subobjects of an object closed under finite sums. Equivalent conditions for the set of closed embeddings (closed morphisms) closed under finite sums is also provided. In case when lattices of admissible subobjects (respectively, closed embeddings) are closed under finite sums, the join semilattice of admissible subobjects (respectively, closed embeddings) of a finite sum is shown to be a biproduct of the component join semilattices. Finally, it is shown whenever the set of closed morphisms is closed under finite sums, the set of proper (respectively, separated) morphisms are also closed under finite sums. This leads to equivalent conditions for the full subcategory of compact (respectively, Hausdorff) preneighbourhood spaces to be closed under finite sums.
Internal preneighbourhood spaces were first conceived inside any finitely complete category with finite coproducts and proper factorisation structure in my earlier paper. In this paper a closure operation is introduced on internal preneighbourhood sp
The main aim of this paper is to provide a description of neighbourhood operators in finitely complete categories with finite coproducts and a proper factorisation system such that the semilattice of admissible subobjects make a distributive complete
When $mathbb C$ is a semi-abelian category, it is well known that the category $mathsf{Grpd}(mathbb C)$ of internal groupoids in $mathbb C$ is again semi-abelian. The problem of determining whether the same kind of phenomenon occurs when the property
We develop some basic concepts in the theory of higher categories internal to an arbitrary $infty$-topos. We define internal left and right fibrations and prove a version of the Grothendieck construction and of Yonedas lemma for internal categories.
Let $mathscr{C}$ be an additive category with an involution $ast$. Suppose that $varphi : X rightarrow X$ is a morphism of $mathscr{C}$ with core inverse $varphi^{co} : X rightarrow X$ and $eta : X rightarrow X$ is a morphism of $mathscr{C}$ such tha