ﻻ يوجد ملخص باللغة العربية
Uncertainty lower bounds for parameter estimations associated with a unitary family of mixed-state density matrices are obtained by embedding the space of density matrices in the Hilbert space of square-root density matrices. In the Hilbert-space setup the measure of uncertainty is given by the skew information of the second kind, while the uncertainty lower bound is given by the Wigner-Yanase skew information associated with the conjugate observable. Higher-order corrections to the uncertainty lower bound are determined by higher-order quantum skew moments; expressions for these moments are worked out in closed form.
The three ways of generalization of canonical coherent states are briefly reviewed and compared with the emphasis laid on the (minimum) uncertainty way. The characteristic uncertainty relations, which include the Schroedinger and Robertson inequaliti
Separability criteria are typically of the necessary, but not sufficient, variety, in that satisfying some separability criterion, such as positivity of eigenvalues under partial transpose, does not strictly imply separability. Certifying separabilit
I generalize the concept of balancedness to qudits with arbitrary dimension $d$. It is an extension of the concept of balancedness in New J. Phys. {bf 12}, 075025 (2010) [1]. At first, I define maximally entangled states as being the stochastic state
In this work we study various notions of uncertainty for angular momentum in the spin-s representation of SU(2). We characterize the uncertainty regions given by all vectors, whose components are specified by the variances of the three angular moment
Lagrangian descriptions of irreducible and reducible integer higher-spin representations of the Poincare group subject to a Young tableaux $Y[hat{s}_1,hat{s}_2]$ with two columns are constructed within a metric-like formulation in a $d$-dimensional f