ﻻ يوجد ملخص باللغة العربية
A new class of locally unital and locally finite dimensional algebras $A$ over an arbitrary algebraically closed field is discovered. Each of them admits an upper finite weakly triangular decomposition, a generalization of an upper finite triangular decomposition. Any locally unital algebra which admits an upper finite Cartan decomposition is Morita equivalent to some special locally unital algebra $A$ which admits an upper finite weakly triangular decomposition. It is established that the category $A$-lfdmod of locally finite dimensional left $A$-modules is an upper finite fully stratified category in the sense of Brundan-Stroppel. Moreover, $A$ is semisimple if and only if its centralizer subalgebras associated to certain idempotent elements are semisimple. Furthermore, certain endofunctors are defined and give categorical actions of some Lie algebras on the subcategory of $A$-lfdmod consisting of all objects which have a finite standard filtration. In the case $A$ is the locally unital algebra associated to one of cyclotomic oriented Brauer categories, cyclotomic Brauer categories and cyclotomic Kauffman categories, $A$ admits an upper finite weakly triangular decomposition. This leads to categorifications of representations of the classical limits of coideal algebras, which come from all integrable highest weight modules of $mathfrak {sl}_infty$ or $hat {mathfrak{sl}}_e$. Finally, we study representations of $A$ associated to either cyclotomic Brauer categories or cyclotomic Kauffman categories in details, including explicit criteria on the semisimplicity of $A$ over an arbitrary field, and on $A$-lfdmod being upper finite highest weight category in the sense of Brundan-Stroppel, and on Morita equivalence between $A$ and direct sum of infinitely many (degenerate) cyclotomic Hecke algebras.
Let $A$ be the locally unital algebra associated to a cyclotomic oriented Brauer category over an arbitrary algebraically closed field $Bbbk$ of characteristic $pge 0$. The category of locally finite dimensional representations of $A $ is used to giv
This is an introduction to some aspects of Fomin-Zelevinskys cluster algebras and their links with the representation theory of quivers and with Calabi-Yau triangulated categories. It is based on lectures given by the author at summer schools held in
In this article we analyze the structure of $2$-categories of symmetric projective bimodules over a finite dimensional algebra with respect to the action of a finite abelian group. We determine under which condition the resulting $2$-category is fiat
For a split reductive group $G$ over a finite field, we show that the neutral block of its mixed Hecke category with a fixed monodromy under the torus action is monoidally equivalent to the mixed Hecke category of the corresponding endoscopic group $
The main result of this paper establishes a bijection between the set of equivalence classes of simple transitive $2$-representations with a fixed apex $mathcal{J}$ of a fiat $2$-category $cC$ and the set of equivalence classes of faithful simple tra