ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of Galaxy Star Formation and Metallicity: Impact on Double Compact Objects Mergers

91   0   0.0 ( 0 )
 نشر من قبل Lumen Boco
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the impact of different galaxy statistics and empirical metallicity scaling relations on the merging rates and on the properties of compact objects binaries. First, we analyze the similarities and differences of using the star formation rate functions or the stellar mass functions as galaxy statistics for the computation of the cosmic star formation rate density. Then we investigate the effects of adopting the Fundamental Metallicity Relation or a classic Mass Metallicity Relation to assign metallicity to galaxies with given properties. We find that when the Fundamental Metallicity Relation is exploited, the bulk of the star formation occurs at relatively high metallicities even at high redshift; the opposite holds when the Mass Metallicity Relation is employed, since in this case the metallicity at which most of the star formation takes place strongly decreases with redshift. We discuss the various reasons and possible biases originating this discrepancy. Finally, we show the impact that these different astrophysical prescriptions have on the merging rates and on the properties of compact objects binaries; specifically, we present results for the redshift dependent merging rates and for the chirp mass and time delay distributions of the merging binaries.



قيم البحث

اقرأ أيضاً

The early evolution of a dense young star cluster (YSC) depends on the intricate connection between stellar evolution and dynamical processes. Thus, N-body simulations of YSCs must account for both aspects. We discuss N-body simulations of YSCs with three different metallicities (Z=0.01, 0.1 and 1 Zsun), including metallicity-dependent stellar evolution recipes and metallicity-dependent prescriptions for stellar winds and remnant formation. We show that mass-loss by stellar winds influences the reversal of core collapse. In particular, the post-collapse expansion of the core is faster in metal-rich YSCs than in metal-poor YSCs, because the former lose more mass (through stellar winds) than the latter. As a consequence, the half-mass radius expands more in metal-poor YSCs. We also discuss how these findings depend on the total mass and on the virial radius of the YSC. These results give us a clue to understand the early evolution of YSCs with different metallicity.
Galaxy mergers and interactions are an integral part of our basic understanding of how galaxies grow and evolve over time. However, the effect that galaxy mergers have on star formation rates (SFR) is contested, with observations of galaxy mergers sh owing reduced, enhanced and highly enhanced star formation. We aim to determine the effect of galaxy mergers on the SFR of galaxies using statistically large samples of galaxies, totalling over 200,000, over a large redshift range, 0.0 to 4.0. We train and use convolutional neural networks to create binary merger identifications (merger or non-merger) in the SDSS, KiDS and CANDELS imaging surveys. We then compare the galaxy main sequence subtracted SFR of the merging and non-merging galaxies to determine what effect, if any, a galaxy merger has on SFR. We find that the SFR of merging galaxies are not significantly different from the SFR of non-merging systems. The changes in the average SFR seen in the star forming population when a galaxy is merging are small, of the order of a factor of 1.2. However, the higher the SFR above the galaxy main sequence, the higher the fraction of galaxy mergers. Galaxy mergers have little effect on the SFR of the majority of merging galaxies compared to the non-merging galaxies. The typical change in SFR is less than 0.1~dex in either direction. Larger changes in SFR can be seen but are less common. The increase in merger fraction as the distance above the galaxy main sequence increases demonstrates that galaxy mergers can induce starbursts.
150 - Ji-hoon Kim 2009
In hierarchical structure formation, merging of galaxies is frequent and known to dramatically affect their properties. To comprehend these interactions high-resolution simulations are indispensable because of the nonlinear coupling between pc and Mp c scales. To this end, we present the first adaptive mesh refinement (AMR) simulation of two merging, low mass, initially gas-rich galaxies (1.8e10 Ms each), including star formation and feedback. With galaxies resolved by ~2e7 total computational elements, we achieve unprecedented resolution of the multiphase interstellar medium, finding a widespread starburst in the merging galaxies via shock-induced star formation. The high dynamic range of AMR also allows us to follow the interplay between the galaxies and their embedding medium depicting how galactic outflows and a hot metal-rich halo form. These results demonstrate that AMR provides a powerful tool in understanding interacting galaxies.
135 - V. Kalogera 2006
Current observations of double neutron stars provide us with a wealth of information that we can use to investigate their evolutionary history and the physical conditions of neutron star formation. Understanding this history and formation conditions further allow us to make theoretical predictions for the formation of other double compact objects with one or two black hole components and assess the detectability of such systems by ground-based gravitational-wave interferometers. In this paper we summarize our groups body of work in the past few years and we place our conclusions and current understanding in the framework of other work in this area of astrophysical research.
There is now a large consensus that the current epoch of the Cosmic Star Formation History (CSFH) is dominated by low mass galaxies while the most active phase at 1<z<2 is dominated by more massive galaxies, which undergo a faster evolution. Massive galaxies tend to inhabit very massive halos such as galaxy groups and clusters. We aim to understand whether the observed galaxy downsizing could be interpreted as a halo downsizing, whereas the most massive halos, and their galaxy populations, evolve more rapidly than the halos of lower mass. Thus, we study the contribution to the CSFH of galaxies inhabiting group-sized halos. This is done through the study of the evolution of the Infra-Red (IR) luminosity function of group galaxies from redshift 0 to ~1.6. We use a sample of 39 X-ray selected groups in the Extended Chandra Deep Field South (ECDFS), the Chandra Deep Field North (CDFN), and the COSMOS field, where the deepest available mid- and far-IR surveys have been conducted with Spitzer MIPS and Hersche PACS. Groups at low redshift lack the brightest, rarest, and most star forming IR-emitting galaxies observed in the field. Their IR-emitting galaxies contribute <10% of the comoving volume density of the whole IR galaxy population in the local Universe. At redshift >~1, the most IR-luminous galaxies (LIRGs and ULIRGs) are preferentially located in groups, and this is consistent with a reversal of the star-formation rate vs .density anti-correlation observed in the nearby Universe. At these redshifts, group galaxies contribute 60-80% of the CSFH, i.e. much more than at lower redshifts. Below z~1, the comoving number and SFR densities of IR-emitting galaxies in groups decline significantly faster than those of all IR-emitting galaxies. Our results are consistent with a halo downsizing scenario and highlight the significant role of environment quenching in shaping the CSFH.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا