ﻻ يوجد ملخص باللغة العربية
Time crystalline structures are characterized by regularity that single-particle or many-body systems manifest in the time domain, closely resembling the spatial regularity of ordinary space crystals. Here we show that time and space crystalline structures can be combined together and even six-dimensional time-space lattices can be realized. As an example, we demonstrate that such time-space crystalline structures can reveal the six-dimensional quantum Hall effect quantified by the third Chern number.
By analogy with the formation of space crystals, crystalline structures can also appear in the time domain. While in the case of space crystals we often ask about periodic arrangements of atoms in space at a moment of a detection, in time crystals th
We report on the design, fabrication and characterization of magnetic nanostructures to create a lattice of magnetic traps with sub--micron period for trapping ultracold atoms. These magnetic nanostructures were fabricated by patterning a Co/Pd multi
We propose to use ultracold fermionic atoms in one-dimensional optical lattices to quantum simulate the electronic transport in quantum cascade laser (QCL) structures. The competition between the coherent tunneling among (and within) the wells and th
The non-equilibrium dynamics of a gas of cold atoms in which Rydberg states are off-resonantly excited is studied in the presence of noise. The interplay between interaction and off-resonant excitation leads to an initial dynamics where aggregates of
We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles