ﻻ يوجد ملخص باللغة العربية
A basic diagnostic of entanglement in mixed quantum states is known as the partial transpose and the corresponding entanglement measure is called the logarithmic negativity. Despite the great success of logarithmic negativity in characterizing bosonic many-body systems, generalizing the partial transpose to fermionic systems remained a technical challenge until recently when a new definition that accounts for the Fermi statistics was put forward. In this paper, we propose a way to generalize the partial transpose to anyons with (non-Abelian) fractional statistics based on the apparent similarity between the partial transpose and the braiding operation. We then define the anyonic version of the logarithmic negativity and show that it satisfies the standard requirements such as monotonicity to be an entanglement measure. In particular, we elucidate the properties of the anyonic logarithmic negativity by computing it for a toy density matrix of a pair of anyons within various categories. We conjecture that the subspace of states with a vanishing logarithmic negativity is a set of measure zero in the entire space of anyonic states, in contrast with the ordinary qubit systems where this subspace occupies a finite volume. We prove this conjecture for multiplicity-free categories.
Interaction in quantum systems can spread initially localized quantum information into the many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is the key to resolving various conundrums in physics. H
We express the positive partial transpose (PPT) separability criterion for symmetric states of multi-qubit systems in terms of matrix inequalities based on the recently introduced tensor representation for spin states. We construct a matrix from the
We perform a quantum information analysis for multi-mode Gaussian approximate position measurements, underlying noisy homodyning in quantum optics. The Gaussian maximizer property is established for the entropy reduction of these measurements which p
We study the distinguishability of a particular type of maximally entangled states -- the lattice states using a new approach of semidefinite program. With this, we successfully construct all sets of four ququad-ququad orthogonal maximally entangled
A unified description of i) classical phase transitions and their remnants in finite systems and ii) quantum phase transitions is presented. The ensuing discussion relies on the interplay between, on the one hand, the thermodynamic concepts of temper