ﻻ يوجد ملخص باللغة العربية
Direct $N$-body simulations of star clusters are accurate but expensive, largely due to the numerous $mathcal{O} (N^2)$ pairwise force calculations. To solve the post-million-body problem, it will be necessary to use approximate force solvers, such as tree codes. In this work, we adapt a tree-based, optimized Fast Multipole Method (FMM) to the collisional $N$-body problem. The use of a rotation-accelerated translation operator and an error-controlled cell opening criterion leads to a code that can be tuned to arbitrary accuracy. We demonstrate that our code, Taichi, can be as accurate as direct summation when $N> 10^4$. This opens up the possibility of performing large-$N$, star-by-star simulations of massive stellar clusters, and would permit large parameter space studies that would require years with the current generation of direct summation codes. Using a series of tests and idealized models, we show that Taichi can accurately model collisional effects, such as dynamical friction and the core-collapse time of idealized clusters, producing results in strong agreement with benchmarks from other collisional codes such as NBODY6++GPU or PeTar. Parallelized using OpenMP and AVX, Taichi is demonstrated to be more efficient than other CPU-based direct $N$-body codes for simulating large systems. With future improvements to the handling of close encounters and binary evolution, we clearly demonstrate the potential of an optimized FMM for the modeling of collisional stellar systems, opening the door to accurate simulations of massive globular clusters, super star clusters, and even galactic nuclei.
We describe a major upgrade of a Monte Carlo code which has previously been used for many studies of dense star clusters. We outline the steps needed in order to calibrate the results of the new Monte Carlo code against $N$-body simulations for large
We present a new parallel code for computing the dynamical evolution of collisional N-body systems with up to N~10^7 particles. Our code is based on the the Henon Monte Carlo method for solving the Fokker-Planck equation, and makes assumptions of sph
The numerical simulations of massive collisional stellar systems, such as globular clusters (GCs), are very time-consuming. Until now, only a few realistic million-body simulations of GCs with a small fraction of binaries (5%) have been performed by
We present Particle-Particle-Particle-Mesh (PPPM) and Tree Particle-Mesh (TreePM) implementations on GRAPE-5 and GRAPE-6A systems, special-purpose hardware accelerators for gravitational many-body simulations. In our PPPM and TreePM implementations o
We present a new symplectic integrator designed for collisional gravitational $N$-body problems which makes use of Kepler solvers. The integrator is also reversible and conserves 9 integrals of motion of the $N$-body problem to machine precision. The