ﻻ يوجد ملخص باللغة العربية
This paper primarily presents two methods of ranking aggregated fuzzy numbers from intervals using the Interval Agreement Approach (IAA). The two proposed ranking methods within this study contain the combination and application of previously proposed similarity measures, along with attributes novel to that of aggregated fuzzy numbers from interval-valued data. The shortcomings of previous measures, along with the improvements of the proposed methods, are illustrated using both a synthetic and real-world application. The real-world application regards the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm, modified to include both the previous and newly proposed methods.
This paper presents a method to compute the degree of similarity between two aggregated fuzzy numbers from intervals using the Interval Agreement Approach (IAA). The similarity measure proposed within this study contains several features and attribut
In this paper, the interval-valued intuitionistic fuzzy matrix (IVIFM) is introduced. The interval-valued intuitionistic fuzzy determinant is also defined. Some fundamental operations are also presented. The need of IVIFM is explain by an example.
Ranking of intuitionsitic fuzzy number plays a vital role in decision making and other intuitionistic fuzzy applications. In this paper, we propose a new ranking method of intuitionistic fuzzy number based on distance measure. We first define a dista
Aggregation of large databases in a specific format is a frequently used process to make the data easily manageable. Interval-valued data is one of the data types that is generated by such an aggregation process. Using traditional methods to analyze
We present a novel approach for the derivation of PDE modeling curvature-driven flows for matrix-valued data. This approach is based on the Riemannian geometry of the manifold of Symmetric Positive Definite Matrices Pos(n).