ﻻ يوجد ملخص باللغة العربية
Visual storytelling is a creative and challenging task, aiming to automatically generate a story-like description for a sequence of images. The descriptions generated by previous visual storytelling approaches lack coherence because they use word-level sequence generation methods and do not adequately consider sentence-level dependencies. To tackle this problem, we propose a novel hierarchical visual storytelling framework which separately models sentence-level and word-level semantics. We use the transformer-based BERT to obtain embeddings for sentences and words. We then employ a hierarchical LSTM network: the bottom LSTM receives as input the sentence vector representation from BERT, to learn the dependencies between the sentences corresponding to images, and the top LSTM is responsible for generating the corresponding word vector representations, taking input from the bottom LSTM. Experimental results demonstrate that our model outperforms most closely related baselines under automatic evaluation metrics BLEU and CIDEr, and also show the effectiveness of our method with human evaluation.
Reasoning is a critical ability towards complete visual understanding. To develop machine with cognition-level visual understanding and reasoning abilities, the visual commonsense reasoning (VCR) task has been introduced. In VCR, given a challenging
Adversarial attacks for discrete data (such as texts) have been proved significantly more challenging than continuous data (such as images) since it is difficult to generate adversarial samples with gradient-based methods. Current successful attack m
Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as
Modern pre-trained language models are mostly built upon backbones stacking self-attention and feed-forward layers in an interleaved order. In this paper, beyond this stereotyped layer pattern, we aim to improve pre-trained models by exploiting layer
Transformer based models, like BERT and RoBERTa, have achieved state-of-the-art results in many Natural Language Processing tasks. However, their memory footprint, inference latency, and power consumption are prohibitive efficient inference at the ed