ﻻ يوجد ملخص باللغة العربية
We study two families of probability measures on integer partitions, which are Schur measures with parameters tuned in such a way that the edge fluctuations are characterized by a critical exponent different from the generic $1/3$. We find that the first part asymptotically follows a higher-order analogue of the Tracy-Widom GUE distribution, previously encountered by Le Doussal, Majumdar and Schehr in quantum statistical physics. We also compute limit shapes, and discuss an exact mapping between one of our families and the multicritical unitary matrix models introduced by Periwal and Shevitz.
We study probabilistic and combinatorial aspects of natural volume-and-trace weighted plane partitions and their continuous analogues. We prove asymptotic limit laws for the largest parts of these ensembles in terms of new and known hard- and soft-ed
ErdH{o}s, Gyarfas and Pyber showed that every $r$-edge-coloured complete graph $K_n$ can be covered by $25 r^2 log r$ vertex-disjoint monochromatic cycles (independent of $n$). Here, we extend their result to the setting of binomial random graphs. Th
We study the number $P(n)$ of partitions of an integer $n$ into sums of distinct squares and derive an integral representation of the function $P(n)$. Using semi-classical and quantum statistical methods, we determine its asymptotic average part $P_{
We study two types of probability measures on the set of integer partitions of $n$ with at most $m$ parts. The first one chooses the random partition with a chance related to its largest part only. We then obtain the limiting distributions of all of
In third paper of the series we construct a large family of representations of the quantum toroidal $gl_1$ algebra whose bases are parameterized by plane partitions with various boundary conditions and restrictions. We study the corresponding formal