ﻻ يوجد ملخص باللغة العربية
We show how a filtration of Delaunay complexes can be used to approximate the persistence diagram of the distance to a point set in $R^d$. Whereas the full Delaunay complex can be used to compute this persistence diagram exactly, it may have size $O(n^{lceil d/2 rceil})$. In contrast, our construction uses only $O(n)$ simplices. The central idea is to connect Delaunay complexes on progressively denser subsamples by considering the flips in an incremental construction as simplices in $d+1$ dimensions. This approach leads to a very simple and straightforward proof of correctness in geometric terms, because the final filtration is dual to a $(d+1)$-dimensional Voronoi construction similar to the standard Delaunay filtration complex. We also, show how this complex can be efficiently constructed.
We define signed dual volumes at all dimensions for circumcentric dual meshes. We show that for pairwise Delaunay triangulations with mild boundary assumptions these signed dual volumes are positive. This allows the use of such Delaunay meshes for Di
We study metrics that assess how close a triangulation is to being a Delaunay triangulation, for use in contexts where a good triangulation is desired but constraints (e.g., maximum degree) prevent the use of the Delaunay triangulation itself. Our ne
We present an algorithm for producing Delaunay triangulations of manifolds. The algorithm can accommodate abstract manifolds that are not presented as submanifolds of Euclidean space. Given a set of sample points and an atlas on a compact manifold, a
We present an algorithm that takes as input a finite point set in Euclidean space, and performs a perturbation that guarantees that the Delaunay triangulation of the resulting perturbed point set has quantifiable stability with respect to the metric
We introduce a parametrized notion of genericity for Delaunay triangulations which, in particular, implies that the Delaunay simplices of $delta$-generic point sets are thick. Equipped with this notion, we study the stability of Delaunay triangulatio