ترغب بنشر مسار تعليمي؟ اضغط هنا

First order transition in trigonal structure ${textbf{Ca}}{textbf{Mn}}_{2}{textbf{P}}_{2}$

420   0   0.0 ( 0 )
 نشر من قبل Yanjie Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report structural and physical properties of the single crystalline ${mathrm{Ca}}{mathrm{Mn}}_{2}{mathrm{P}}_{2}$. The X-ray diffraction(XRD) results show that ${mathrm{Ca}}{mathrm{Mn}}_{2}{mathrm{P}}_{2}$ adopts the trigonal ${mathrm{Ca}}{mathrm{Al}}_{2}{mathrm{Si}}_{2}$-type structure. Temperature dependent electrical resistivity $rho(T)$ measurements indicate an insulating ground state for ${mathrm{Ca}}{mathrm{Mn}}_{2}{mathrm{P}}_{2}$ with activation energies of 40 meV and 0.64 meV for two distinct regions, respectively. Magnetization measurements show no apparent magnetic phase transition under 400 K. Different from other ${mathrm{A}}{mathrm{Mn}}_{2}{mathrm{Pn}}_{2}$ (A = Ca, Sr, and Ba, and Pn = P, As, and Sb) compounds with the same structure, heat capacity $C_{mathrm{p}}(T)$ and $rho(T)$ reveal that ${mathrm{Ca}}{mathrm{Mn}}_{2}{mathrm{P}}_{2}$ has a first-order transition at $T$ = 69.5 K and the transition temperature shifts to high temperature upon increasing pressure. The emergence of plenty of new Raman modes below the transition, clearly suggests a change in symmetry accompanying the transition. The combination of the structural, transport, thermal and magnetic measurements, points to an unusual origin of the transition.



قيم البحث

اقرأ أيضاً

148 - N. Kida , Y. Yamasaki , R. Shimano 2008
A broad continuum-like spin excitation (1--10 meV) with a peak structure around 2.4 meV has been observed in the ferroelectric $ab$ spiral spin phase of Gd$_{0.7}$Tb$_{0.3}$MnO$_3$ by using terahertz (THz) time-domain spectroscopy. Based on a complet e set of light-polarization measurements, we identify the spin excitation active for the light $E$ vector only along the a-axis, which grows in intensity with lowering temperature even from above the magnetic ordering temperature but disappears upon the transition to the $A$-type antiferromagnetic phase. Such an electric-dipole active spin excitation as observed at THz frequencies can be ascribed to the two-magnon excitation in terms of the unique polarization selection rule in a variety of the magnetically ordered phases.
Incorporation of bismuth (Bi) in dilute quantities in (In)GaAs has been shown to lead to unique electronic properties that can in principle be exploited for the design of high efficiency telecomm lasers. This motivates the development of simple model s of the electronic structure of these dilute bismide alloys, which can be used to evaluate their potential as a candidate material system for optical applications. Here, we begin by using detailed calculations based on an $sp^{3}s^{*}$ tight-binding model of (In)GaBi$_{x}$As$_{1-x}$ to verify the presence of a valence band-anticrossing interaction in these alloys. Based on the tight-binding model the derivation of a 12-band $textbf{k}cdottextbf{p}$ Hamiltonian for dilute bismide alloys is outlined. We show that the band structure obtained from the 12-band model is in excellent agreement with full tight-binding supercell calculations. Finally, we apply the 12-band model to In$_{0.53}$Ga$_{0.47}$Bi$_{x}$As$_{1-x}$ and compare the calculated variation of the band gap and spin-orbit-splitting to a variety of spectroscopic measurements performed on a series of MBE-grown In$_{0.53}$Ga$_{0.47}$Bi$_{x}$As$_{1-x}$/InP layers.
153 - Ting Xue 2007
We give the number of nilpotent orbits in the Lie algebras of orthogonal groups under the adjoint action of the groups over $tF_{2^n}$. Let $G$ be an adjoint algebraic group of type $B,C$ or $D$ defined over an algebraically closed field of character istic 2. We construct the Springer correspondence for the nilpotent variety in the Lie algebra of $G$.
Using an $sp^{3}s^{*}$ tight-binding model we demonstrate how the observed strong bowing of the band gap and spin-orbit-splitting with increasing Bi composition in the dilute bismide alloy GaBi$_{x}$As$_{1-x}$ can be described in terms of a band-anti crossing interaction between the extended states of the GaAs valence band edge and highly localised Bi-related resonant states lying below the GaAs valence band edge. We derive a 12-band $textbf{k}cdottextbf{p}$ Hamiltonian to describe the band structure of GaBi$_{x}$As$_{1-x}$ and show that this model is in excellent agreement with full tight-binding calculations of the band structure in the vicinity of the band edges, as well as with experimental measurements of the band gap and spin-orbit-splitting across a large composition range. Based on a tight-binding model of GaBi$_{x}$N$_{y}$As$_{1-x-y}$ we show that to a good approximation N and Bi act independently of one another in disordered GaBi$_{x}$N$_{y}$As$_{1-x-y}$ alloys, indicating that a simple description of the band structure is possible. We present a 14-band $textbf{k}cdottextbf{p}$ Hamiltonian for ordered GaBi$_{x}$N$_{y}$As$_{1-x-y}$ crystals which reproduces accurately the essential features of full tight-binding calculations of the band structure in the vicinity of the band edges. The $textbf{k}cdottextbf{p}$ models we present here are therefore ideally suited to the simulation of the optoelectronic properties of these novel III-V semiconductor alloys.
We used temperature dependent high-resolution x-ray powder diffraction and magnetization measurements to investigate structural, magnetic and electronic degrees of freedom across the ferromagnetic magneto-elastic phase transition in Mn1Fe1P0.6-wSi0.4 Bw (w = 0, 0.02, 0.04, 0.06, 0.08). The magnetic transition was gradually tuned from a strong first-order (w = 0) towards a second-order magnetic transition by substituting P by B. Increasing the B content leads to a systematic increase in the magnetic transition temperature and a decrease in thermal hysteresis, which completely vanishes for w = 0.08. Furthermore, the largest changes in lattice parameter across the magnetic transition occur for w = 0, which systematically becomes smaller approaching the samples with w = 0.08. Electron density plots show a strong directional preference of the electronic distribution on the Fe site, which indicates the forming of bonds between Fe atoms and Fe and P/Si in the paramagnetic phase. On the other hand, the Mn-site shows no preferred directions resembling the behaviour of a free electron gas. Due to the low B concentrations (w = 0 - 0.08), distortions of the lattice are limited. However, even small amounts of B strongly disturb the overall topology of the electron density across the unit cell. Samples containing B show a strongly reduced variation in the electron density compared to the parent compound without B.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا