ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the many-body dynamics near a conical intersection with trapped Rydberg ions

122   0   0.0 ( 0 )
 نشر من قبل Filippo Maria Gambetta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Conical intersections between electronic potential energy surfaces are paradigmatic for the study of non-adiabatic processes in the excited states of large molecules. However, since the corresponding dynamics occurs on a femtosecond timescale, their investigation remains challenging and requires ultrafast spectroscopy techniques. We demonstrate that trapped Rydberg ions are a platform to engineer conical intersections and to simulate their ensuing dynamics on larger length and time scales of the order of nanometers and microseconds, respectively; all this in a highly controllable system. Here, the shape of the potential energy surfaces and the position of the conical intersection can be tuned thanks to the interplay between the high polarizability and the strong dipolar exchange interactions of Rydberg ions. We study how the presence of a conical intersection affects both the nuclear and electronic dynamics demonstrating, in particular, how it results in the inhibition of the nuclear motion. These effects can be monitored in real-time via a direct spectroscopic measurement of the electronic populations in a state-of-the-art experimental setup.



قيم البحث

اقرأ أيضاً

185 - T. Secker , N. Ewald , J. Joger 2016
We theoretically study trapped ions that are immersed in an ultracold gas of Rydberg-dressed atoms. By off-resonant coupling on a dipole-forbidden transition, the adiabatic atom-ion potential can be made repulsive. We study the energy exchange betwee n the atoms and a single trapped ion and find that Langevin collisions are inhibited in the ultracold regime for these repulsive interactions. Therefore, the proposed system avoids recently observed ion heating in hybrid atom-ion systems caused by coupling to the ions radio frequency trapping field and retains ultracold temperatures even in the presence of excess micromotion.
We provide a detailed theoretical and conceptual study of a planned experiment to excite Rydberg states of ions trapped in a Paul trap. The ultimate goal is to exploit the strong state dependent interactions between Rydberg ions to implement quantum information processing protocols and to simulate the dynamics of strongly interacting spin systems. We highlight the promises of this approach when combining the high degree of control and readout of quantum states in trapped ion crystals with the novel and fast gate schemes based on interacting giant Rydberg atomic dipole moments. We discuss anticipated theoretical and experimental challenges on the way towards its realization.
We investigate the energy dynamics of non-crystallized (melted) ions, confined in a Paul trap. The non-periodic Coulomb interaction experienced by melted ions forms a medium for non-conservative energy transfer from the radio-frequency (rf) field to the ions, a process known as rf heating. We study rf heating by analyzing numerical simulations of non-crystallized ion motion in Paul trap potentials, in which the energy of the ions secular motion changes at discrete intervals, corresponding to ion-ion collisions. The analysis of these collisions is used as a basis to derive a simplified model of rf heating energy dynamics, from which we conclude that the rf heating rate is predominantly dependent on the rf field strength. We confirm the predictability of the model experimentally: Two trapped $^{40}$Ca$^{+}$ ions are deterministically driven to melt, and their fluorescence rate is used to infer the ions energy. From simulation and experimental results, we generalize which experimental parameters are required for efficient recrystallization of melted trapped ions.
We proposed utilizing a medium with a high optical depth (OD) and a Rydberg state of low principal quantum number, $n$, to create a weakly-interacting many-body system of Rydberg polaritons, based on the effect of electromagnetically induced transpar ency (EIT). We experimentally verified the mean field approach to weakly-interacting Rydberg polaritons, and observed the phase shift and attenuation induced by the dipole-dipole interaction (DDI). The DDI-induced phase shift or attenuation can be viewed as a consequence of the elastic or inelastic collisions among the Rydberg polaritons. Using a weakly-interacting system, we further observed that a larger DDI strength caused a width of the momentum distribution of Rydberg polaritons at the exit of the system to become notably smaller as compared with that at the entrance. In this study, we took $n =32$ and the atomic (or polariton) density of 5$times10^{10}$ (or 2$times10^{9}$) cm$^{-3}$. The observations demonstrate that the elastic collisions are sufficient to drive the thermalization process in this weakly-interacting many-body system. The combination of the $mu$s-long interaction time due to the high-OD EIT medium and the $mu$m$^2$-size collision cross section due to the DDI suggests a new and feasible platform for the Bose-Einstein condensation of the Rydberg polaritons.
We study the interaction of a light beams carrying angular momentum with a single, trapped and well localized ion. We provide a detailed calculation of selection rules and excitation probabilities for quadrupole transitions. The results show the depe ndencies on the angular momentum and polarization of the laser beam as well as the direction of the quantization magnetic field. In order to observe optimally the specific effects, focusing the angular momentum beam close to the diffraction limit is required. We discuss a protocol for examining experimentally the effects on the S$_{1/2}$ to D$_{5/2}$ transition using a $^{40}$Ca$^+$ ion. Various applications and advantages are expected when using light carrying angular momentum: In quantum information processing, where qubit states of ion crystals are controlled, parasitic light shifts could be avoided as the ion is excited in the dark zone of the beam at zero electric field amplitude. Such interactions also open the door to high dimensional entanglement between light and matter. In spectroscopy one might access transitions which have escaped excitation so far due to vanishing transition dipole moments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا