ترغب بنشر مسار تعليمي؟ اضغط هنا

On Pointwise converse of Fatous theorem for Euclidean and Real hyperbolic spaces

174   0   0.0 ( 0 )
 نشر من قبل Jayanta Sarkar
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Jayanta Sarkar




اسأل ChatGPT حول البحث

In this article, we extend a result of L. Loomis and W. Rudin, regarding boundary behavior of positive harmonic functions on the upper half space $R_+^{n+1}$. We show that similar results remain valid for more general approximate identities. We apply this result to prove a result regarding boundary behavior of nonnegative eigenfunctions of the Laplace-Beltrami operator on real hyperbolic space $mathbb H^n$. We shall also prove a generalization of a result regarding large time behavior of solution of the heat equation proved in cite{Re}. We use this result to prove a result regarding asymptotic behavior of certain eigenfunctions of the Laplace-Beltrami operator on real hyperbolic space $mathbb H^n$.



قيم البحث

اقرأ أيضاً

The second named author and David Kalaj introduced a pseudometric on any domain in the real Euclidean space $mathbb R^n$, $nge 3$, defined in terms of conformal harmonic discs, by analogy with Kobayashis pseudometric on complex manifolds, which is de fined in terms of holomorphic discs. They showed that on the unit ball of $mathbb R^n$, this minimal metric coincides with the classical Beltrami-Cayley-Klein metric. In the present paper we investigate properties of the minimal pseudometric and give sufficient conditions for a domain to be (complete) hyperbolic, meaning that the minimal pseudometric is a (complete) metric. We show in particular that a domain having a negative minimal plurisubharmonic exhaustion function is hyperbolic, and a bounded strongly minimally convex domain is complete hyperbolic. We also prove a localization theorem for the minimal pseudometric. Finally, we show that a convex domain is complete hyperbolic if and only if it does not contain any affine 2-plane.
We show that Sturms classical separation theorem on the interlacing of the zeros of linearly independent solutions of real second order two-term ordinary differential equations necessarily fails in the presence of a unique turning point in the princi pal part of the equation. Related results are discussed. The last section contains an extension of the main result to a finite number of turning points.
In this paper, we prove a $Tb$ theorem on product spaces $Bbb R^ntimes Bbb R^m$, where $b(x_1,x_2)=b_1(x_1)b_2(x_2)$, $b_1$ and $b_2$ are para-accretive functions on $Bbb R^n$ and $Bbb R^m$, respectively.
We prove a Fatou-type theorem and its converse for certain positive eigenfunctions of the Laplace-Beltrami operator $mathcal{L}$ on a Harmonic $NA$ group. We show that a positive eigenfunction $u$ of $mathcal{L}$ with eigenvalue $beta^2-rho^2$, $beta in (0,infty)$, has an admissible limit in the sense of Koranyi, precisely at those boundary points where the strong derivative of the boundary measure of $u$ exists. Moreover, the admissible limit and the strong derivative are the same. This extends a result of Ramey and Ullrich regarding nontangential convergence of positive harmonic functions on the Euclidean upper half space.
We compute conformal anomalies for conformal field theories with free conformal scalars and massless spin $1/2$ fields in hyperbolic space $mathbb{H}^d$ and in the ball $mathbb{B}^d$, for $2leq dleq 7$. These spaces are related by a conformal transfo rmation. In even dimensional spaces, the conformal anomalies on $mathbb{H}^{2n}$ and $mathbb{B}^{2n}$ are shown to be identical. In odd dimensional spaces, the conformal anomaly on $mathbb{B}^{2n+1}$ comes from a boundary contribution, which exactly coincides with that of $mathbb{H}^{2n+1}$ provided one identifies the UV short-distance cutoff on $mathbb{B}^{2n+1}$ with the inverse large distance IR cutoff on $mathbb{H}^{2n+1}$, just as prescribed by the conformal map. As an application, we determine, for the first time, the conformal anomaly coefficients multiplying the Euler characteristic of the boundary for scalars and half-spin fields with various boundary conditions in $d=5$ and $d=7$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا