ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of bright stars with AstroSat Soft X-ray Telescope

77   0   0.0 ( 0 )
 نشر من قبل K.P. Singh Prof.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of four bright stars observed with the AstroSat Soft X-ray Telescope (SXT). Visible light from bright stars like these can leak through the very thin filter in front of the CCD in the focal plane CCD camera of the SXT and thus making the extraction of X-ray events difficult. Here, we show how to extract the X-ray events without contamination by the visible light. The procedure applied to four bright stars here demonstrates how reliable X-ray information can be derived in such cases. The sample of bright stars studied here consists of two A spectral types (HIP 19265, HIP 88580), one G/K Giant (Capella), and a nearby M-type dwarf (HIP 23309). No X-ray emission is observed from the A-type stars, as expected. X-ray spectra of Capella and HIP 23309 are derived and modeled here, and compared with the previous X-ray observations of these stars to show the reliability of the method used. We find that optical light can start to leak in the very soft energy bands below 0.5 keV for stars with V=8 mag. In the process, we present the first X-ray spectrum of HIP 23309.



قيم البحث

اقرأ أيضاً

The Soft X-ray Telescope (SXT) aboard the $AstroSat$ satellite is the first Indian X-ray telescope in space. It is a modest size X-ray telescope with a charge coupled device (CCD) camera in the focal plane, which provides X-ray images in the $sim 0.3 -8.0$ keV band. A forte of SXT is in providing undistorted spectra of relatively bright X-ray sources, in which it excels some current large CCD-based X-ray telescopes. Here, we highlight some of the published spectral and timing results obtained using the SXT data to demonstrate the capabilities and overall performance of this telescope.
126 - K.P. Singh , V. Girish , J. Tiwari 2021
We present our $AstroSat$ soft X-ray observations of a compact binary system, AR Sco, and analysis of its X-ray observations with $Chandra$ that were taken only about a week before the $AstroSat$ observations. An analysis of the soft X-ray ($0.3-2.0$ keV) data limits the modulation of the spin, orbital, or beat periods to less than 0.03 counts s$^{-1}$ or $<$10% of the average count rate. The X-ray flux obtained from both observatories is found to be almost identical (within a few percent) in flux, and about 30% lower than reported from the nine months older observations with $XMM-Newton$. A two-temperature thermal plasma model with the same spectral parameters fit $Chandra$ and $AstroSat$ data very well, and requires very little absorption in the line of sight to the source. The low-temperature component has the same temperature ($sim$1 keV) as reported earlier, but the high-temperature component has a lower temperature of 5.0$^{+0.8}_{-0.7}$ keV as compared to 8.0 keV measured earlier, however, the difference is not statistically significant.
Two long AstroSat Soft X-ray Telescope observations were taken of the third recorded outburst of the Symbiotic Recurrent Nova, V3890 Sgr. The first observing run, 8.1-9.9 days after the outburst, initially showed a stable intensity level with a hard X-ray spectrum that we attribute to shocks between the nova ejecta and the pre-existing stellar companion. On day 8.57, the first, weak, signs appeared of Super Soft Source (SSS) emission powered by residual burning on the surface of the White Dwarf. The SSS emission was observed to be highly variable on time scales of hours. After day 8.9, the SSS component was more stable and brighter. In the second observing run, on days 15.9-19.6 after the outburst, the SSS component was even brighter but still highly variable. The SSS emission was observed to fade significantly during days 16.8-17.8 followed by re-brightening. Meanwhile the shock component was stable leading to increase in hardness ratio during the period of fading. AstroSat and XMM-Newton observations have been used to study the spectral properties of V3890 Sgr to draw quantitative conclusions even if their drawback is model-dependence. We used the xspec to fit spectral models of plasma emission, and the best fits are consistent with the elemental abundances being lower during the second observing run compared to the first for spectra >1 keV. The SSS emission is well fit by non-local thermal equilibrium model atmosphere used for white dwarfs. The resulting spectral parameters, however, are subject to systematic uncertainties such as completeness of atomic data.
The Cadmium Zinc Telluride Imager (CZTI) is an imaging instrument onboard AstroSat. This instrument operates as a nearly open all-sky detector above ~60 keV, making possible long integrations irrespective of the spacecraft pointing. We present a tech nique based on the AstroSat-CZTI data to explore the hard X-ray characteristics of the $gamma$-ray pulsar population. We report highly significant ($sim 30sigma$) detection of hard X-ray (60--380 keV) pulse profile of the Crab pulsar using $sim$5000 ks of CZTI observations within 5 to 70 degrees of Crab position in the sky, using a custom algorithm developed by us. Using Crab as our test source, we estimate the off-axis sensitivity of the instrument and establish AstroSat-CZTI as a prospective tool in investigating hard X-ray characteristics of $gamma$-ray pulsars as faint as 10 mCrab.
Supernova (SN) 2018cow (or AT2018cow) is an optical transient detected in the galaxy CGCG 137-068. It has been classified as a SN due to various characteristics in its optical spectra. The transient is also a bright X-ray source. We present results o f the analysis of ~62ks of X-ray observations taken with the Neil Gehrels Swift Observatory over 27 days. We found a variable behavior in the 0.3-10 keV X-ray light curve of SN 2018cow, with variability timescales of days. The observed X-ray variability could be due to the interaction between the SN ejecta and a non-uniform circumstellar medium, perhaps related to previous mass ejections from a luminous-blue-variable-like progenitor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا