ﻻ يوجد ملخص باللغة العربية
Multispectral cameras capture images in multiple wavelengths in narrow spectral bands. They offer advanced sensing well beyond normal cameras and many single sensor based multispectral cameras have been commercialized aimed at a broad range of applications, such as agroforestry research, medical analysis and so on. However, the existing single sensor based multispectral cameras require accurate alignment to overlay each filter on image sensor pixels, which makes their fabrication very complex, especially when the number of bands is large. This paper demonstrates a new filter technology using a hybrid combination of single plasmonic layer and dielectric layers by computational simulations. A filter mosaic of various bands with narrow spectral width can be achieved with single run manufacturing processes (i.e., exposure, development, deposition and other minor steps), regardless of the number of bands.
Multispectral imaging plays an important role in many applications from astronomical imaging, earth observation to biomedical imaging. However, the current technologies are complex with multiple alignment-sensitive components, predetermined spatial a
A multispectral image camera captures image data within specific wavelength ranges in narrow wavelength bands across the electromagnetic spectrum. Images from a multispectral camera can extract additional information that the human eye or a normal ca
Fluorescence microscopy is a powerful tool to measure molecular specific information in biological samples. However, most biological tissues are highly heterogeneous because of refractive index (RI) differences and thus degrade the signal-to-noise ra
Multispectral imaging systems (MISs) have been used widely to analyze adulteration and toxin formation in oil, yet a dearth of attention has been tendered to oil reheating and reusing despite the consumption of such debased oil being deleterious. To
We report on the integration of large area CVD grown single- and bilayer graphene transparent conductive electrodes (TCEs) on amorphous silicon multispectral photodetectors. The broadband transmission of graphene results in 440% enhancement of the de