ﻻ يوجد ملخص باللغة العربية
Previous theoretical and experimental research has shown that current NISQ devices constitute powerful platforms for analogue quantum simulation. With the exquisite level of control offered by state-of-the-art quantum computers, we show that one can go further and implement a wide class of Floquet Hamiltonians, or timedependent Hamiltonians in general. We then implement a single-qubit version of these models in the IBM Quantum Experience and experimentally realize a temporal version of the Bernevig-Hughes-Zhang Chern insulator. From our data we can infer the presence of a topological transition, thus realizing an earlier proposal of topological frequency conversion by Martin, Refael, and Halperin. Our study highlights promises and limitations when studying many-body systems through multi-frequency driving of quantum computers.
Quantum walks are the quantum mechanical analogue of classical random walks and an extremely powerful tool in quantum simulations, quantum search algorithms, and even for universal quantum computing. In our work, we have designed and fabricated an 8x
We show the presence of Floquet-Weyl and Floquet-topological-insulator phases in a stacked two-dimensional ring-network lattice. The Weyl points in the three-dimensional Brillouin zone and Fermi-arc surface states are clearly demonstrated in the quas
We have recently proposed a two-dimensional quantum walk where the requirement of a higher dimensionality of the coin space is substituted with the alternance of the directions in which the walker can move [C. Di Franco, M. Mc Gettrick, and Th. Busch
The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluc
A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum d