ترغب بنشر مسار تعليمي؟ اضغط هنا

The Generalized Flanders Theorem in Unit-regular Rings

61   0   0.0 ( 0 )
 نشر من قبل Dayong Liu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let R be a unit-regular ring, and let a,b,c in R satisfy aba=aca. If ac and ba are group invertible, we prove that ac is similar to ba. Furthermore, if ac and ba are Drazin invertible, then their Drazin inverses are similar. For any ntimes n complex matrices A,B,C with ABA = ACA ,we prove that AC and BA are similar if and only if their k-powers have the same rank. These generalize the known Flanders theorem proved by Hartwig.



قيم البحث

اقرأ أيضاً

67 - Christian Herrmann 2019
We show that any semiartinian *-regular ring R is unit-regular; if, in addition, R is subdirectly irreducible then it admits a representation within some inner product space.
79 - Christian Herrmann 2019
Given a subdirectly irreducible *-regular ring R, we show that R is a homomorphic image of a regular *-subring of an ultraproduct of the (simple) eRe, e in the minimal ideal of R; moreover, R (with unit) is directly finite if all eRe are unit-regular . Finally, unit-regularity is shown for every member of the variety generated by artinian *-regular rings (endowed with unit and pseudo-inversion).
314 - Pere Ara 2015
We survey recent progress on the realization problem for von Neumann regular rings, which asks whether every countable conical refinement monoid can be realized as the monoid of isoclasses of finitely generated projective right $R$-modules over a von Neumann regular ring $R$.
143 - Christian Herrmann 2019
We show that a von Neumann regular ring with involution is directly finite provided that it admits a representation as a ring of endomorphisms (the involution given by taking adjoints) of a vector space endowed with a non-degenerate orthosymmetric sesquilinear form.
169 - Adel Alahmadi , S. K. Jain , 2018
In a semiprime ring, von Neumann regular elements are determined by their inner inverses. In particular, for elements $a,b$ of a von Neumann regular ring $R$, $a=b$ if and only if $I(a)=I(b)$, where $I(x)$ denotes the set of inner inverses of $xin R$ . We also prove that, in a semiprime ring, the same is true for reflexive inverses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا