ﻻ يوجد ملخص باللغة العربية
Puckered honeycomb Sb monolayer, the structural analog of black phosphorene, has been recently successfully grown by means of molecular beam epitaxy. However, little is known to date about the growth mechanism for such puckered honeycomb monolayer. In this study, by using scanning tunneling microscopy in combination with first-principles density functional theory calculations, we unveil that the puckered honeycomb Sb monolayer takes a kinetics-limited two-step growth mode. As the coverage of Sb increases, the Sb atoms firstly form the distorted hexagonal lattice as the half layer, and then the distorted hexagonal half-layer transforms into the puckered honeycomb lattice as the full layer. These results provide the atomic-scale insight in understanding the growth mechanism of puckered honeycomb monolayer, and can be instructive to the direct growth of other monolayers with the same structure.
Atomically thin two-dimensional (2D) crystals have gained tremendous attentions owing to their potential impacts to the future electronics technologies, as well as the exotic phenomena emerging in these materials. Monolayer of {alpha} phase Sb ({alph
Two-dimensional (2D) MoSi$_2$N$_4$ monolayer is an emerging class of air-stable 2D semiconductor possessing exceptional electrical and mechanical properties. Despite intensive recent research efforts devoted to uncover the material properties of MoSi
The recent emergence of 2D van der Waals magnets down to atomic layer thickness provides an exciting platform for exploring quantum magnetism and spintronics applications. The van der Waals nature stabilizes the long-range ferromagnetic order as a re
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t
The electrical detection of the surface states of topological insulators is strongly impeded by the interference of bulk conduction, which commonly arises due to pronounced doping associated with the formation of lattice defects. As exemplified by th