ﻻ يوجد ملخص باللغة العربية
Graphite, with many industrial applications, is one of the widely sought-after allotropes of carbon. The sp2 hybridized and thermodynamically stable form of carbon forms a layered structure with strong in-plane carbon bonds and weak inter-layer van der Waals bonding. Graphite is also a high-temperature ceramic, and shaping them into complex geometries is challenging, given its limited sintering behavior even at high temperatures. Although the geometric design of the graphite structure in many of the applications could dictate its precision performance, conventional synthesis methods for formulating complex geometric graphite shapes are limited due to the intrinsic brittleness and difficulties of high-temperature processing. Here, we report the development of colloidal graphite ink from commercial graphite powders with reproducible rheological behavior that allows the fabrication of any complex architectures with tunable geometry and directionality via 3D printing at room temperature. The method is enabled via using small amounts of clay, another layered material, as an additive, allowing the proper design of the graphene ink and subsequent binding of graphite platelets during printing. Sheared layers of clay are easily able to flow, adapt, and interface with graphite layers forming strong binding between the layers and between particles that make the larger structures. The direct ink printing of complex 3D architectures of graphite without further heat treatments could lead to easy shape engineering and related applications of graphite at various length scales, including complex graphite molds or crucibles. The 3D printed complex graphitic structures exhibit excellent thermal, electrical, and mechanical properties, and the clay additive does not seem to alter these properties due to the excellent inter-layer dispersion and mixing within the graphite material.
Humanitys interest in manufacturing silica-glass objects extends back over three thousand years. Silica glass is resistant to heating and exposure to many chemicals, and it is transparent in a wide wavelength range. Due to these qualities, silica gla
The complex scaling method, which consists in continuing spatial coordinates into the complex plane, is a well-established method that allows to compute resonant eigenfunctions of the time-independent Schroedinger operator. Whenever it is desirable t
Hexagonal manganites REMnO3 (RE, rare earths) have attracted significant attention due to their potential applications as multiferroic materials and the intriguing physics associated with the topological defects. The two-dimensional (2D) and 3D domai
Three new novel phases of carbon nitride (CN) bilayer, which are named as alpha-C$_{2}$N$_{2}$, beta-C$_{2}$N$_{2}$ and gamma-C$_{4}$N$_{4}$, respectively, have been predicted in this paper. All of them are consisted of two CN sheets connected by C-C
We report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by x-ray diffraction (XRD) while atomic forc