ﻻ يوجد ملخص باللغة العربية
Tensor data often suffer from missing value problem due to the complex high-dimensional structure while acquiring them. To complete the missing information, lots of Low-Rank Tensor Completion (LRTC) methods have been proposed, most of which depend on the low-rank property of tensor data. In this way, the low-rank component of the original data could be recovered roughly. However, the shortcoming is that the detail information can not be fully restored, no matter the Sum of the Nuclear Norm (SNN) nor the Tensor Nuclear Norm (TNN) based methods. On the contrary, in the field of signal processing, Convolutional Sparse Coding (CSC) can provide a good representation of the high-frequency component of the image, which is generally associated with the detail component of the data. Nevertheless, CSC can not handle the low-frequency component well. To this end, we propose two novel methods, LRTC-CSC-I and LRTC-CSC-II, which adopt CSC as a supplementary regularization for LRTC to capture the high-frequency components. Therefore, the LRTC-CSC methods can not only solve the missing value problem but also recover the details. Moreover, the regularizer CSC can be trained with small samples due to the sparsity characteristic. Extensive experiments show the effectiveness of LRTC-CSC methods, and quantitative evaluation indicates that the performance of our models are superior to state-of-the-art methods.
State-of-the-art methods for Convolutional Sparse Coding usually employ Fourier-domain solvers in order to speed up the convolution operators. However, this approach is not without shortcomings. For example, Fourier-domain representations implicitly
Video capture is limited by the trade-off between spatial and temporal resolution: when capturing videos of high temporal resolution, the spatial resolution decreases due to bandwidth limitations in the capture system. Achieving both high spatial and
Most existing deep learning-based pan-sharpening methods have several widely recognized issues, such as spectral distortion and insufficient spatial texture enhancement, we propose a novel pan-sharpening convolutional neural network based on a high-p
Network quantization, which aims to reduce the bit-lengths of the network weights and activations, has emerged as one of the key ingredients to reduce the size of neural networks for their deployments to resource-limited devices. In order to overcome
We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a convolutional network with context-aware skip connections, and compressed, hypercolumn image features combined with a convolutional tessell