ﻻ يوجد ملخص باللغة العربية
The label noise transition matrix $T$, reflecting the probabilities that true labels flip into noisy ones, is of vital importance to model label noise and design statistically consistent classifiers. The traditional transition matrix is limited to model closed-set label noise, where noisy training data has true class labels within the noisy label set. It is unfitted to employ such a transition matrix to model open-set label noise, where some true class labels are outside the noisy label set. Thus when considering a more realistic situation, i.e., both closed-set and open-set label noise occurs, existing methods will undesirably give biased solutions. Besides, the traditional transition matrix is limited to model instance-independent label noise, which may not perform well in practice. In this paper, we focus on learning under the mixed closed-set and open-set label noise. We address the aforementioned issues by extending the traditional transition matrix to be able to model mixed label noise, and further to the cluster-dependent transition matrix to better approximate the instance-dependent label noise in real-world applications. We term the proposed transition matrix as the cluster-dependent extended transition matrix. An unbiased estimator (i.e., extended $T$-estimator) has been designed to estimate the cluster-dependent extended transition matrix by only exploiting the noisy data. Comprehensive synthetic and real experiments validate that our method can better model the mixed label noise, following its more robust performance than the prior state-of-the-art label-noise learning methods.
The problem of open-set noisy labels denotes that part of training data have a different label space that does not contain the true class. Lots of approaches, e.g., loss correction and label correction, cannot handle such open-set noisy labels well,
Traditional supervised learning aims to train a classifier in the closed-set world, where training and test samples share the same label space. In this paper, we target a more challenging and realistic setting: open-set learning (OSL), where there ex
In open set learning, a model must be able to generalize to novel classes when it encounters a sample that does not belong to any of the classes it has seen before. Open set learning poses a realistic learning scenario that is receiving growing atten
Active Learning is essential for more label-efficient deep learning. Bayesian Active Learning has focused on BALD, which reduces model parameter uncertainty. However, we show that BALD gets stuck on out-of-distribution or junk data that is not releva
Deep Learning systems have shown tremendous accuracy in image classification, at the cost of big image datasets. Collecting such amounts of data can lead to labelling errors in the training set. Indexing multimedia content for retrieval, classificati