ترغب بنشر مسار تعليمي؟ اضغط هنا

Counting People by Estimating People Flows

471   0   0.0 ( 0 )
 نشر من قبل Weizhe Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern methods for counting people in crowded scenes rely on deep networks to estimate people densities in individual images. As such, only very few take advantage of temporal consistency in video sequences, and those that do only impose weak smoothness constraints across consecutive frames. In this paper, we advocate estimating people flows across image locations between consecutive images and inferring the people densities from these flows instead of directly regressing them. This enables us to impose much stronger constraints encoding the conservation of the number of people. As a result, it significantly boosts performance without requiring a more complex architecture. Furthermore, it allows us to exploit the correlation between people flow and optical flow to further improve the results. We also show that leveraging people conservation constraints in both a spatial and temporal manner makes it possible to train a deep crowd counting model in an active learning setting with much fewer annotations. This significantly reduces the annotation cost while still leading to similar performance to the full supervision case.



قيم البحث

اقرأ أيضاً

Modern methods for counting people in crowded scenes rely on deep networks to estimate people densities in individual images. As such, only very few take advantage of temporal consistency in video sequences, and those that do only impose weak smoothn ess constraints across consecutive frames. In this paper, we advocate estimating people flows across image locations between consecutive images and inferring the people densities from these flows instead of directly regressing. This enables us to impose much stronger constraints encoding the conservation of the number of people. As a result, it significantly boosts performance without requiring a more complex architecture. Furthermore, it also enables us to exploit the correlation between people flow and optical flow to further improve the results. We will demonstrate that we consistently outperform state-of-the-art methods on five benchmark datasets.
We present a method for predicting dense depth in scenarios where both a monocular camera and people in the scene are freely moving. Existing methods for recovering depth for dynamic, non-rigid objects from monocular video impose strong assumptions o n the objects motion and may only recover sparse depth. In this paper, we take a data-driven approach and learn human depth priors from a new source of data: thousands of Internet videos of people imitating mannequins, i.e., freezing in diverse, natural poses, while a hand-held camera tours the scene. Because people are stationary, training data can be generated using multi-view stereo reconstruction. At inference time, our method uses motion parallax cues from the static areas of the scenes to guide the depth prediction. We demonstrate our method on real-world sequences of complex human actions captured by a moving hand-held camera, show improvement over state-of-the-art monocular depth prediction methods, and show various 3D effects produced using our predicted depth.
Monocular object detection and tracking have improved drastically in recent years, but rely on a key assumption: that objects are visible to the camera. Many offline tracking approaches reason about occluded objects post-hoc, by linking together trac klets after the object re-appears, making use of reidentification (ReID). However, online tracking in embodied robotic agents (such as a self-driving vehicle) fundamentally requires object permanence, which is the ability to reason about occluded objects before they re-appear. In this work, we re-purpose tracking benchmarks and propose new metrics for the task of detecting invisible objects, focusing on the illustrative case of people. We demonstrate that current detection and tracking systems perform dramatically worse on this task. We introduce two key innovations to recover much of this performance drop. We treat occluded object detection in temporal sequences as a short-term forecasting challenge, bringing to bear tools from dynamic sequence prediction. Second, we build dynamic models that explicitly reason in 3D, making use of observations produced by state-of-the-art monocular depth estimation networks. To our knowledge, ours is the first work to demonstrate the effectiveness of monocular depth estimation for the task of tracking and detecting occluded objects. Our approach strongly improves by 11.4% over the baseline in ablations and by 5.0% over the state-of-the-art in F1 score.
By analyzing the motion of people and other objects in a scene, we demonstrate how to infer depth, occlusion, lighting, and shadow information from video taken from a single camera viewpoint. This information is then used to composite new objects int o the same scene with a high degree of automation and realism. In particular, when a user places a new object (2D cut-out) in the image, it is automatically rescaled, relit, occluded properly, and casts realistic shadows in the correct direction relative to the sun, and which conform properly to scene geometry. We demonstrate results (best viewed in supplementary video) on a range of scenes and compare to alternative methods for depth estimation and shadow compositing.
While an important problem in the vision community is to design algorithms that can automatically caption images, few publicly-available datasets for algorithm development directly address the interests of real users. Observing that people who are bl ind have relied on (human-based) image captioning services to learn about images they take for nearly a decade, we introduce the first image captioning dataset to represent this real use case. This new dataset, which we call VizWiz-Captions, consists of over 39,000 images originating from people who are blind that are each paired with five captions. We analyze this dataset to (1) characterize the typical captions, (2) characterize the diversity of content found in the images, and (3) compare its content to that found in eight popular vision datasets. We also analyze modern image captioning algorithms to identify what makes this new dataset challenging for the vision community. We publicly-share the dataset with captioning challenge instructions at https://vizwiz.org

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا