ﻻ يوجد ملخص باللغة العربية
We present a new package for Mathematica system, called Libra. Its purpose is to provide convenient tools for the transformation of the first-order differential systems $partial_i boldsymbol j = M_i boldsymbol j$ for one or several variables. In particular, Libra is designed for the reduction to $epsilon$-form of the differential systems which appear in multiloop calculations. The package also contains some tools for the construction of general solution: both via perturbative expansion of path-ordered exponent and via generalized power series expansion near regular singular points.Libra also has tools to determine the minimal list of coefficients in the asymptotics of the original master integrals, sufficient for fixing the boundary conditions.
The Mathematica toolkit AMBRE derives Mellin-Barnes (MB) representations for Feynman integrals in d=4-2eps dimensions. It may be applied for tadpoles as well as for multi-leg multi-loop scalar and tensor integrals. AMBRE uses a loop-by-loop approach
I will present a new method for thinking about and for computing loop integrals based on differential equations. All required information is obtained by algebraic means and is encoded in a small set of simple quantities that I will describe. I will p
Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations. These lectures give a review of these developments, while not assuming any prior knowledge of the subject. Aft
We present $text{Fuchsia}$ $-$ an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients $partial_x,mathbf{f}(x,epsilon) = mathbb{A}(x,epsilon),mathbf{f}(x,epsilon)$ finds a basis t
We present a novel type of differential equations for on-shell loop integrals. The equations are second-order and importantly, they reduce the loop level by one, so that they can be solved iteratively in the loop order. We present several infinite se