ﻻ يوجد ملخص باللغة العربية
Cosmologists aim to model the evolution of initially low amplitude Gaussian density fluctuations into the highly non-linear cosmic web of galaxies and clusters. They aim to compare simulations of this structure formation process with observations of large-scale structure traced by galaxies and infer the properties of the dark energy and dark matter that make up 95% of the universe. These ensembles of simulations of billions of galaxies are computationally demanding, so that more efficient approaches to tracing the non-linear growth of structure are needed. We build a V-Net based model that transforms fast linear predictions into fully nonlinear predictions from numerical simulations. Our NN model learns to emulate the simulations down to small scales and is both faster and more accurate than the current state-of-the-art approximate methods. It also achieves comparable accuracy when tested on universes of significantly different cosmological parameters from the one used in training. This suggests that our model generalizes well beyond our training set.
The emergence of a complex, large-scale organisation of cosmic matter into the Cosmic Web is a beautiful exemplification of how complexity can be produced by simple initial conditions and simple physical laws. In the epoch of Big Data in astrophysics
To exploit the power of next-generation large-scale structure surveys, ensembles of numerical simulations are necessary to give accurate theoretical predictions of the statistics of observables. High-fidelity simulations come at a towering computatio
The Helioseismic and Magnetic Imager (HMI) onboard NASAs Solar Dynamics Observatory (SDO) produces estimates of the photospheric magnetic field which are a critical input to many space weather modelling and forecasting systems. The magnetogram produc
As a part of NASAs Heliophysics System Observatory (HSO) fleet of satellites,the Solar Dynamics Observatory (SDO) has continuously monitored the Sun since2010. Ultraviolet (UV) and Extreme UV (EUV) instruments in orbit, such asSDOs Atmospheric Imagin
Traditional neuroimage analysis pipelines involve computationally intensive, time-consuming optimization steps, and thus, do not scale well to large cohort studies with thousands or tens of thousands of individuals. In this work we propose a fast and