ﻻ يوجد ملخص باللغة العربية
In this paper, we present a new construction of asymmetric quantum codes (AQCs) by combining classical concatenated codes (CCs) with tensor product codes (TPCs), called asymmetric quantum concatenated and tensor product codes (AQCTPCs) which have the following three advantages. First, only the outer codes in AQCTPCs need to satisfy the orthogonal constraint in quantum codes, and any classical linear code can be used for the inner, which makes AQCTPCs very easy to construct. Second, most AQCTPCs are highly degenerate, which means they can correct many more errors than their classical TPC counterparts. Consequently, we construct several families of AQCs with better parameters than known results in the literature. Third, AQCTPCs can be efficiently decoded although they are degenerate, provided that the inner and outer codes are efficiently decodable. In particular, we significantly reduce the inner decoding complexity of TPCs from $Omega(n_2a^{n_1})(a>1)$ to $O(n_2)$ by considering error degeneracy, where $n_1$ and $n_2$ are the block length of the inner code and the outer code, respectively. Furthermore, we generalize our concatenation scheme by using the generalized CCs and TPCs correspondingly.
The concept of asymmetric entanglement-assisted quantum error-correcting code (asymmetric EAQECC) is introduced in this article. Codes of this type take advantage of the asymmetry in quantum errors since phase-shift errors are more probable than qudi
Matrix-product codes over finite fields are an important class of long linear codes by combining several commensurate shorter linear codes with a defining matrix over finite fields. The construction of matrix-product codes with certain self-orthogona
Two concatenated coding schemes incorporating algebraic Reed-Solomon (RS) codes and polarization-adjusted convolutional (PAC) codes are proposed. Simulation results show that at a bit error rate of $10^{-5}$, a concatenated scheme using RS and PAC co
In 1997, Shor and Laflamme defined the weight enumerators for quantum error-correcting codes and derived a MacWilliams identity. We extend their work by introducing our double weight enumerators and complete weight enumerators. The MacWilliams identi
The $q$-ary block codes with two distances $d$ and $d+1$ are considered. Several constructions of such codes are given, as in the linear case all codes can be obtained by a simple modification of linear equidistant codes. Upper bounds for the maximum