ﻻ يوجد ملخص باللغة العربية
The recently discovered gravitational wave sources GW190521 and GW190814 have shown evidence of BH mergers with masses and spins that could be outside of the range expected from isolated stellar evolution. These merging objects could have undergone previous mergers. Such hierarchical mergers are predicted to be frequent in active galactic nuclei (AGN) disks, where binaries form and evolve efficiently by dynamical interactions and gaseous dissipation. Here we compare the properties of these observed events to the theoretical models of mergers in AGN disks, which are obtained by performing one-dimensional $N$-body simulations combined with semi-analytical prescriptions. The high BH masses in GW190521 are consistent with mergers of high-generation (high-g) BHs where the initial progenitor stars had high metallicity, 2g BHs if the original progenitors were metal-poor, or 1g BHs that had gained mass via super-Eddington accretion. Other measured properties related to spin parameters in GW190521 are also consistent with mergers in AGN disks. Furthermore, mergers in the lower mass gap or those with low mass ratio as found in GW190814 and GW190412 are also reproduced by mergers of 2g-1g or 1g-1g objects with significant accretion in AGN disks. Finally, due to gas accretion, the massive neutron star merger reported in GW190425 can be produced in an AGN disk.
The astrophysical origin of gravitational wave (GW) transients is a timely open question in the wake of discoveries by LIGO/Virgo. In active galactic nuclei (AGNs), binaries form and evolve efficiently by interaction with a dense population of stars
Black hole mergers detected by LIGO and Virgo continue delivering transformational discoveries. The most recent example is the merger GW190521, which is the first detected with component masses exceeding the limit predicted by stellar models, and the
Jets associated with Active Galactic Nuclei (AGN) have been observed for almost a century, initially at optical and radio wavelengths. They are now widely accepted as exhausts produced electromagnetically by the central, spinning, massive black hole
We study accretion environments of active galactic nuclei when a super-massive black hole wanders in a circum-nuclear region and passes through an interstellar medium there. It is expected that a Bondi-Hoyle-Lyttleton type accretion of the interstell
We aim to constrain the evolution of AGN as a function of obscuration using an X-ray selected sample of $sim2000$ AGN from a multi-tiered survey including the CDFS, AEGIS-XD, COSMOS and XMM-XXL fields. The spectra of individual X-ray sources are anal