ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-loop helicity amplitudes for $gg to ZZ$ with full top-quark mass effects

60   0   0.0 ( 0 )
 نشر من قبل Bakul Agarwal `
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the two-loop QCD corrections to $gg to ZZ$ involving a closed top-quark loop. We present a new method to systematically construct linear combinations of Feynman integrals with a convergent parametric representation, where we also allow for irreducible numerators, higher powers of propagators, dimensionally shifted integrals, and subsector integrals. The amplitude is expressed in terms of such finite integrals by employing syzygies derived with linear algebra and finite field techniques. Evaluating the amplitude using numerical integration, we find agreement with previous expansions in asymptotic limits and provide ab initio results also for intermediate partonic energies and non-central scattering at higher energies.



قيم البحث

اقرأ أيضاً

We present a complete set of analytic helicity amplitudes for top quark pair production via gluon fusion at two-loops in QCD. For the first time, we include corrections due to massive fermion loops which give rise to integrals over elliptic curves. W e present the results of the missing master integrals needed to compute the amplitude and obtain an analytic form for the finite remainders in terms of iterated integrals using rationalised kinematics and finite field sampling. We also study the numerical evaluation of the iterated integrals.
We compute the top quark contribution to the two-loop amplitude for on-shell $Z$ boson pair production in gluon fusion, $gg to ZZ$. Exact dependence on the top quark mass is retained. For each phase space point the integral reduction is performed num erically and the master integrals are evaluated using the auxiliary mass flow method, allowing fast computation of the amplitude with very high precision.
We present the two-loop QCD corrections to the amplitude of the Higgs production associated with a $Z$ boson via the bottom quark-antiquark annihilation channel with a non-vanishing bottom-quark Yukawa coupling. The computation is performed by projec ting the D-dimensional scattering amplitude directly onto a set of Lorentz structures related to the linear polarisation states of the $Z$ boson. We cross-check the finite remainders through a computation based on conventional form factor decomposition. We show that for physical observables, an ultimate D-dimensional form factor decomposition of amplitudes is not necessary which has a huge potential to simplify a multiloop computation. We compute numerically the resulting cross sections under the soft-virtual approximation to NNLO and find it three orders of magnitude smaller than that of the s-channel.
In this Letter, we present for the first time a calculation of the complete next-to-leading order corrections to the $gg to ZH$ process. We use the method of small mass expansion to tackle the most challenging two-loop virtual amplitude, in which the top quark mass dependence is retained throughout the calculations. We show that our method provides reliable numeric results in all kinematic regions, and present phenomenological predictions for the total and differential cross sections at the Large Hadron Collider and its future upgrades. Our results are necessary ingredients towards reducing the theoretical uncertainties of the $pp to ZH$ cross sections down to the percent-level, and provide important theoretical inputs for future precision experimental collider programs.
We present a compact analytic expression for the leading colour two-loop five-gluon amplitude in Yang-Mills theory with a single negative helicity and four positive helicities. The analytic result is reconstructed from numerical evaluations over fini te fields. The numerical method combines integrand reduction, integration-by-parts identities and Laurent expansion into a basis of pentagon functions to compute the coefficients directly from six-dimensional generalised unitarity cuts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا