ﻻ يوجد ملخص باللغة العربية
We propose a distributed quadratic inference function framework to jointly estimate regression parameters from multiple potentially heterogeneous data sources with correlated vector outcomes. The primary goal of this joint integrative analysis is to estimate covariate effects on all outcomes through a marginal regression model in a statistically and computationally efficient way. We develop a data integration procedure for statistical estimation and inference of regression parameters that is implemented in a fully distributed and parallelized computational scheme. To overcome computational and modeling challenges arising from the high-dimensional likelihood of the correlated vector outcomes, we propose to analyze each data source using Qu, Lindsay and Li (2000)s quadratic inference functions, and then to jointly reestimate parameters from each data source by accounting for correlation between data sources using a combined meta-estimator in a similar spirit to Hansen (1982)s generalised method of moments. We show both theoretically and numerically that the proposed method yields efficiency improvements and is computationally fast. We illustrate the proposed methodology with the joint integrative analysis of the association between smoking and metabolites in a large multi-cohort study and provide an R package for ease of implementation.
Multi-task learning is increasingly used to investigate the association structure between multiple responses and a single set of predictor variables in many applications. In the era of big data, the coexistence of incomplete outcomes, large number of
In electronic health records (EHRs), latent subgroups of patients may exhibit distinctive patterning in their longitudinal health trajectories. For such data, growth mixture models (GMMs) enable classifying patients into different latent classes base
Evidence from animal models and epidemiological studies has linked prenatal alcohol exposure (PAE) to a broad range of long-term cognitive and behavioral deficits. However, there is virtually no information in the scientific literature regarding the
In Genome-Wide Association Studies (GWAS) where multiple correlated traits have been measured on participants, a joint analysis strategy, whereby the traits are analyzed jointly, can improve statistical power over a single-trait analysis strategy. Th
Poverty is a multidimensional concept often comprising a monetary outcome and other welfare dimensions such as education, subjective well-being or health, that are measured on an ordinal scale. In applied research, multidimensional poverty is ubiquit