ﻻ يوجد ملخص باللغة العربية
Quantum repeaters are a promising platform for realizing long-distance quantum communication and thus could form the backbone of a secure quantum internet, a scalable quantum network, or a distributed quantum computer. Repeater protocols that encode information in single- or multi-photon states are limited by transmission losses and the cost of implementing entangling gates or Bell measurements. In this work, we consider implementing a quantum repeater protocol using Gottesman-Kitaev-Preskill (GKP) qubits. These qubits are natural elements for quantum repeater protocols, because they allow for deterministic Gaussian entangling operations and Bell measurements, which can be implemented at room temperature. The GKP encoding is also capable of correcting small displacement errors. At the cost of additional Gaussian noise, photon loss can be converted into a random displacement error channel by applying a phase-insensitive amplifier. Here we show that a similar conversion can be achieved in two-way repeater protocols by using phase-sensitive amplification applied in the post-processing of the measurement data, resulting in less overall Gaussian noise per (sufficiently short) repeater segment. We also investigate concatenating the GKP code with higher level qubit codes while leveraging analog syndrome data, post-selection, and path-selection techniques to boost the rate of communication. We compute the secure key rates and find that GKP repeaters can achieve a comparative performance relative to methods based on photonic qubits while using orders-of-magnitude fewer qubits.
The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit into a bosonic mode is a promising bosonic code for quantum computation due to its tolerance for noise and all-Gaussian gate set. We present a toolkit for phase-space description and manipulatio
The Gottesman-Kitaev-Preskill (GKP) quantum error correcting code attracts much attention in continuous variable (CV) quantum computation and CV quantum communication due to the simplicity of error correcting routines and the high tolerance against G
Scalability of flying photonic quantum systems in generating quantum entanglement offers a potential for implementing large-scale fault-tolerant quantum computation, especially by means of measurement-based quantum computation (MBQC). However, existi
Graph states are a central resource in measurement-based quantum information processing. In the photonic qubit architecture based on Gottesman-Kitaev-Preskill (GKP) encoding, the generation of high-fidelity graph states composed of realistic, finite-
The Gottesman-Kitaev-Preskill (GKP) quantum error-correcting code has emerged as a key technique in achieving fault-tolerant quantum computation using photonic systems. Whereas [Baragiola et al., Phys. Rev. Lett. 123, 200502 (2019)] showed that exper