ﻻ يوجد ملخص باللغة العربية
DRDr II is a hybrid of machine learning and deep learning worlds. It builds on the successes of its antecedent, namely, DRDr, that was trained to detect, locate, and create segmentation masks for two types of lesions (exudates and microaneurysms) that can be found in the eyes of the Diabetic Retinopathy (DR) patients; and uses the entire model as a solid feature extractor in the core of its pipeline to detect the severity level of the DR cases. We employ a big dataset with over 35 thousand fundus images collected from around the globe and after 2 phases of preprocessing alongside feature extraction, we succeed in predicting the correct severity levels with over 92% accuracy.
Diabetic retinopathy (DR) screening is instrumental in preventing blindness, but faces a scaling challenge as the number of diabetic patients rises. Risk stratification for the development of DR may help optimize screening intervals to reduce costs w
Though deep learning has shown successful performance in classifying the label and severity stage of certain diseases, most of them give few explanations on how to make predictions. Inspired by Kochs Postulates, the foundation in evidence-based medic
This paper presents a multitask deep learning model to detect all the five stages of diabetic retinopathy (DR) consisting of no DR, mild DR, moderate DR, severe DR, and proliferate DR. This multitask model consists of one classification model and one
Knowledge distillation allows transferring knowledge from a pre-trained model to another. However, it suffers from limitations, and constraints related to the two models need to be architecturally similar. Knowledge distillation addresses some of the
Diabetes is one of the most prevalent chronic diseases in Bangladesh, and as a result, Diabetic Retinopathy (DR) is widespread in the population. DR, an eye illness caused by diabetes, can lead to blindness if it is not identified and treated in its