ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic beta function in de Sitter space

78   0   0.0 ( 0 )
 نشر من قبل Yoshihisa Kitazawa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate infrared logarithms in inflationary Universe from holographic perspective. We derive gravitational Fokker-Planck and Langevin equations from the consistency condition in quantum gravity. As for primordial perturbations , our approach predicts the identical spectrum with delta N formalism, supporting the consistency of our approach. The existence of the ultraviolet fixed point indicates that the Universe begun with the de Sitter expansion at the Planck scale. We have constructed the UV complete composite inflation model with the logarithmic scaling violation. The epsilon parameter decreases at first but then grows to terminate the inflation. The epsilon problem is naturally solved and Big Bang Universe is realized in the composite Universe.



قيم البحث

اقرأ أيضاً

137 - Benjamin Shlaer 2009
We demonstrate that possession of a single negative mode is not a sufficient criterion for an instanton to mediate exponential decay. For example, de Sitter space is generically stable against decay via the Coleman-De Luccia instanton. This is due to the fact that the de Sitter Euclidean action is bounded below, allowing for an approximately de Sitter invariant false vacuum to be constructed.
We introduce higher-derivative Gauss-Bonnet correction terms in the gravity sector and we relate the modified gravity theory in the bulk to the strongly coupled quantum field theory on a de Sitter boundary. We study the process of holographic thermal ization by examining three nonlocal observables, the two-point function, the Wilson loop and the holographic entanglement entropy. We study the time evolution of these three observables and we find that as the strength of the Gauss-Bonnet coupling is increased, the saturation time of the thermalization process to reach thermal equilibrium becomes shorter with the dominant effect given by the holographic entanglement entropy.
We construct five dimensional black rings in global anti-de Sitter space using numerical methods. These rings satisfy the BPS bound $| J | < M ell$, but the angular velocity always violates the Hawking-Reall bound $| Omega_H ell | leq 1$, indicating that they should be unstable under superradiance. At high temperatures, the limit $| Omega_H ell | searrow 1$ is attained by thin rings with an arbitrarily large radius. However, at sufficiently low temperatures, this limit is saturated by a new kind of rings, whose outer circle can still be arbitrarily long while the hole in the middle does not grow proportionally. This gives rise to a membrane-like horizon geometry, which does not have an asymptotically flat counterpart. We find no evidence for thin AdS black rings whose transverse $S^2$ is much larger than the radius of AdS, $ell$, and thus these solutions never fall into the hydrodynamic regime of the dual CFT. Thermodynamically, we find that AdS black rings never dominate the grand canonical ensemble. The behaviour of our solutions in the microcanonical ensemble approaches known perturbative results in the thin-ring limit.
67 - M. Tanaka 1997
We have found that supersymmetry (SUSY) in curved space is broken softly. It is also found that Pauli-Villars regularization preserves the remaining symmetry, softly broken SUSY. Using it we computed the one-loop effective potential along a (classica l) flat direction in a Wess-Zumino model in de Sitter space. The analysis is relevant to the Affleck-Dine mechanism for baryogenesis. The effective potential is unbounded from below: $V_{eff}(phi)to -3g^2H^2phi ^2 ln phi ^2 /16pi ^2$, where $phi$ is the scalar field along the flat direction, g is a typical coupling constant, and H is the Hubble parameter. This is identical with the effective potential which is obtained by using proper-time cutoff regularization. Since proper-time cutoff regularization is exact even at the large curvature region, the effective potential possesses softly broken SUSY and reliability in the large curvature region.
We consider the entanglement entropy of a free massive scalar field in the one parameter family of $alpha$-vacua in de Sitter space by using a method developed by Maldacena and Pimentel. An $alpha$-vacuum can be thought of as a state filled with part icles from the point of view of the Bunch-Davies vacuum. Of all the $alpha$-vacua we find that the entanglement entropy takes the minimal value in the Bunch-Davies solution. We also calculate the asymptotic value of the Renyi entropy and find that it increases as $alpha$ increases. We argue these feature stem from pair condensation within the non-trivial $alpha$-vacua where the pairs have an intrinsic quantum correlation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا