ﻻ يوجد ملخص باللغة العربية
Neural network forms the foundation of deep learning and numerous AI applications. Classical neural networks are fully connected, expensive to train and prone to overfitting. Sparse networks tend to have convoluted structure search, suboptimal performance and limited usage. We proposed the novel uniform sparse network (USN) with even and sparse connectivity within each layer. USN has one striking property that its performance is independent of the substantial topology variation and enormous model space, thus offers a search-free solution to all above mentioned issues of neural networks. USN consistently and substantially outperforms the state-of-the-art sparse network models in prediction accuracy, speed and robustness. It even achieves higher prediction accuracy than the fully connected network with only 0.55% parameters and 1/4 computing time and resources. Importantly, USN is conceptually simple as a natural generalization of fully connected network with multiple improvements in accuracy, robustness and scalability. USN can replace the latter in a range of applications, data types and deep learning architectures. We have made USN open source at https://github.com/datapplab/sparsenet.
We present a novel network pruning algorithm called Dynamic Sparse Training that can jointly find the optimal network parameters and sparse network structure in a unified optimization process with trainable pruning thresholds. These thresholds can ha
Formal verification of neural networks is essential for their deployment in safety-critical areas. Many available formal verification methods have been shown to be instances of a unified Branch and Bound (BaB) formulation. We propose a novel framewor
Despite the wide application of Graph Convolutional Network (GCN), one major limitation is that it does not benefit from the increasing depth and suffers from the oversmoothing problem. In this work, we first characterize this phenomenon from the inf
The compression of deep neural networks (DNNs) to reduce inference cost becomes increasingly important to meet realistic deployment requirements of various applications. There have been a significant amount of work regarding network compression, whil
Botnet detection is a critical step in stopping the spread of botnets and preventing malicious activities. However, reliable detection is still a challenging task, due to a wide variety of botnets involving ever-increasing types of devices and attack