ترغب بنشر مسار تعليمي؟ اضغط هنا

Single Image Super-resolution with a Switch Guided Hybrid Network for Satellite Images

229   0   0.0 ( 0 )
 نشر من قبل Shreya Roy
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The major drawbacks with Satellite Images are low resolution, Low resolution makes it difficult to identify the objects present in Satellite images. We have experimented with several deep models available for Single Image Superresolution on the SpaceNet dataset and have evaluated the performance of each of them on the satellite image data. We will dive into the recent evolution of the deep models in the context of SISR over the past few years and will present a comparative study between these models. The entire Satellite image of an area is divided into equal-sized patches. Each patch will be used independently for training. These patches will differ in nature. Say, for example, the patches over urban areas have non-homogeneous backgrounds because of different types of objects like vehicles, buildings, roads, etc. On the other hand, patches over jungles will be more homogeneous in nature. Hence, different deep models will fit on different kinds of patches. In this study, we will try to explore this further with the help of a Switching Convolution Network. The idea is to train a switch classifier that will automatically classify a patch into one category of models best suited for it.



قيم البحث

اقرأ أيضاً

Recently, deep convolutional neural networks (CNNs) have been widely explored in single image super-resolution (SISR) and contribute remarkable progress. However, most of the existing CNNs-based SISR methods do not adequately explore contextual infor mation in the feature extraction stage and pay little attention to the final high-resolution (HR) image reconstruction step, hence hindering the desired SR performance. To address the above two issues, in this paper, we propose a two-stage attentive network (TSAN) for accurate SISR in a coarse-to-fine manner. Specifically, we design a novel multi-context attentive block (MCAB) to make the network focus on more informative contextual features. Moreover, we present an essential refined attention block (RAB) which could explore useful cues in HR space for reconstructing fine-detailed HR image. Extensive evaluations on four benchmark datasets demonstrate the efficacy of our proposed TSAN in terms of quantitative metrics and visual effects. Code is available at https://github.com/Jee-King/TSAN.
Convolutional neural networks are the most successful models in single image super-resolution. Deeper networks, residual connections, and attention mechanisms have further improved their performance. However, these strategies often improve the recons truction performance at the expense of considerably increasing the computational cost. This paper introduces a new lightweight super-resolution model based on an efficient method for residual feature and attention aggregation. In order to make an efficient use of the residual features, these are hierarchically aggregated into feature banks for posterior usage at the network output. In parallel, a lightweight hierarchical attention mechanism extracts the most relevant features from the network into attention banks for improving the final output and preventing the information loss through the successive operations inside the network. Therefore, the processing is split into two independent paths of computation that can be simultaneously carried out, resulting in a highly efficient and effective model for reconstructing fine details on high-resolution images from their low-resolution counterparts. Our proposed architecture surpasses state-of-the-art performance in several datasets, while maintaining relatively low computation and memory footprint.
Among the major remaining challenges for single image super resolution (SISR) is the capacity to recover coherent images with global shapes and local details conforming to human vision system. Recent generative adversarial network (GAN) based SISR me thods have yielded overall realistic SR images, however, there are always unpleasant textures accompanied with structural distortions in local regions. To target these issues, we introduce the gradient branch into the generator to preserve structural information by restoring high-resolution gradient maps in SR process. In addition, we utilize a U-net based discriminator to consider both the whole image and the detailed per-pixel authenticity, which could encourage the generator to maintain overall coherence of the reconstructed images. Moreover, we have studied objective functions and LPIPS perceptual loss is added to generate more realistic and natural details. Experimental results show that our proposed method outperforms state-of-the-art perceptual-driven SR methods in perception index (PI), and obtains more geometrically consistent and visually pleasing textures in natural image restoration.
147 - Yingxue Pang , Xin Li , Xin Jin 2020
Single image super-resolution (SISR) aims to recover the high-resolution (HR) image from its low-resolution (LR) input image. With the development of deep learning, SISR has achieved great progress. However, It is still a challenge to restore the rea l-world LR image with complicated authentic degradations. Therefore, we propose FAN, a frequency aggregation network, to address the real-world image super-resolu-tion problem. Specifically, we extract different frequencies of the LR image and pass them to a channel attention-grouped residual dense network (CA-GRDB) individually to output corresponding feature maps. And then aggregating these residual dense feature maps adaptively to recover the HR image with enhanced details and textures. We conduct extensive experiments quantitatively and qualitatively to verify that our FAN performs well on the real image super-resolution task of AIM 2020 challenge. According to the released final results, our team SR-IM achieves the fourth place on the X4 track with PSNR of 31.1735 and SSIM of 0.8728.
During training phase, more connections (e.g. channel concatenation in last layer of DenseNet) means more occupied GPU memory and lower GPU utilization, requiring more training time. The increase of training time is also not conducive to launch appli cation of SR algorithms. Thiss why we abandoned DenseNet as basic network. Futhermore, we abandoned this paper due to its limitation only applied on medical images. Please view our lastest work applied on general images at arXiv:1911.03464.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا