ترغب بنشر مسار تعليمي؟ اضغط هنا

Exoplanet Detection using Machine Learning

148   0   0.0 ( 0 )
 نشر من قبل Benjamin Moster
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new machine learning based technique to detect exoplanets using the transit method. Machine learning and deep learning techniques have proven to be broadly applicable in various scientific research areas. We aim to exploit some of these methods to improve the conventional algorithm based approaches presently used in astrophysics to detect exoplanets. Using the time-series analysis library TSFresh to analyse light curves, we extracted 789 features from each curve, which capture the information about the characteristics of a light curve. We then used these features to train a gradient boosting classifier using the machine learning tool lightgbm. This approach was tested on simulated data, which showed that is more effective than the conventional box least squares fitting (BLS) method. We further found that our method produced comparable results to existing state-of-the-art deep learning models, while being much more computationally efficient and without needing folded and secondary views of the light curves. For Kepler data, the method is able to predict a planet with an AUC of 0.948, so that 94.8 per cent of the true planet signals are ranked higher than non-planet signals. The resulting recall is 0.96, so that 96 per cent of real planets are classified as planets. For the Transiting Exoplanet Survey Satellite (TESS) data, we found our method can classify light curves with an accuracy of 0.98, and is able to identify planets with a recall of 0.82 at a precision of 0.63.



قيم البحث

اقرأ أيضاً

One of the principal bottlenecks to atmosphere characterisation in the era of all-sky surveys is the availability of fast, autonomous and robust atmospheric retrieval methods. We present a new approach using unsupervised machine learning to generate informed priors for retrieval of exoplanetary atmosphere parameters from transmission spectra. We use principal component analysis (PCA) to efficiently compress the information content of a library of transmission spectra forward models generated using the PLATON package. We then apply a $k$-means clustering algorithm in PCA space to segregate the library into discrete classes. We show that our classifier is almost always able to instantaneously place a previously unseen spectrum into the correct class, for low-to-moderate spectral resolutions, $R$, in the range $R~=~30-300$ and noise levels up to $10$~per~cent of the peak-to-trough spectrum amplitude. The distribution of physical parameters for all members of the class therefore provides an informed prior for standard retrieval methods such as nested sampling. We benchmark our informed-prior approach against a standard uniform-prior nested sampler, finding that our approach is up to a factor two faster, with negligible reduction in accuracy. We demonstrate the application of this method to existing and near-future observatories, and show that it is suitable for real-world application. Our general approach is not specific to transmission spectroscopy and should be more widely applicable to cases that involve repetitive fitting of trusted high-dimensional models to large data catalogues, including beyond exoplanetary science.
110 - Li-Chin Yeh 2020
The photometric light curves of BRITE satellites were examined through a machine learning technique to investigate whether there are possible exoplanets moving around nearby bright stars. Focusing on different transit periods, several convolutional n eural networks were constructed to search for transit candidates. The convolutional neural networks were trained with synthetic transit signals combined with BRITE light curves until the accuracy rate was higher than 99.7 $%$. Our method could efficiently lead to a small number of possible transit candidates. Among these ten candidates, two of them, HD37465, and HD186882 systems, were followed up through future observations with a higher priority. The codes of convolutional neural networks employed in this study are publicly available at http://www.phys.nthu.edu.tw/$sim$jiang/BRITE2020YehJiangCNN.tar.gz.
Since the start of the Wide Angle Search for Planets (WASP) program, more than 160 transiting exoplanets have been discovered in the WASP data. In the past, possible transit-like events identified by the WASP pipeline have been vetted by human inspec tion to eliminate false alarms and obvious false positives. The goal of the present paper is to assess the effectiveness of machine learning as a fast, automated, and reliable means of performing the same functions on ground-based wide-field transit-survey data without human intervention. To this end, we have created training and test datasets made up of stellar light curves showing a variety of signal types including planetary transits, eclipsing binaries, variable stars, and non-periodic signals. We use a combination of machine learning methods including Random Forest Classifiers (RFCs) and Convolutional Neural Networks (CNNs) to distinguish between the different types of signals. The final algorithms correctly identify planets in the test data ~90% of the time, although each method on its own has a significant fraction of false positives. We find that in practice, a combination of different methods offers the best approach to identifying the most promising exoplanet transit candidates in data from WASP, and by extension similar transit surveys.
A novel artificial intelligence (AI) technique that uses machine learning (ML) methodologies combines several algorithms, which were developed by ThetaRay, Inc., is applied to NASAs Transiting Exoplanets Survey Satellite (TESS) dataset to identify ex oplanetary candidates. The AI/ML ThetaRay system is trained initially with Kepler exoplanetary data and validated with confirmed exoplanets before its application to TESS data. Existing and new features of the data, based on various observational parameters, are constructed and used in the AI/ML analysis by employing semi-supervised and unsupervised machine learning techniques. By the application of ThetaRay system to 10,803 light curves of threshold crossing events (TCEs) produced by the TESS mission, obtained from the Mikulski Archive for Space Telescopes, the algorithm yields about 50 targets for further analysis, and we uncover three new exoplanetary candidates by further manual vetting. This study demonstrates for the first time the successful application of the particular combined multiple AI/ML-based methodologies to a large astrophysical dataset for rapid automated classification of TCEs.
A machine learning technique with two-dimension convolutional neural network is proposed for detecting exoplanet transits. To test this new method, five different types of deep learning models with or without folding are constructed and studied. The light curves of the Kepler Data Release 25 are employed as the input of these models. The accuracy, reliability, and completeness are determined and their performances are compared. These results indicate that a combination of two-dimension convolutional neural network with folding would be an excellent choice for the future transit analysis.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا