ﻻ يوجد ملخص باللغة العربية
While Generative Adversarial Networks (GANs) show increasing performance and the level of realism is becoming indistinguishable from natural images, this also comes with high demands on data and computation. We show that state-of-the-art GAN models -- such as they are being publicly released by researchers and industry -- can be used for a range of applications beyond unconditional image generation. We achieve this by an iterative scheme that also allows gaining control over the image generation process despite the highly non-linear latent spaces of the latest GAN models. We demonstrate that this opens up the possibility to re-use state-of-the-art, difficult to train, pre-trained GANs with a high level of control even if only black-box access is granted. Our work also raises concerns and awareness that the use cases of a published GAN model may well reach beyond the creators intention, which needs to be taken into account before a full public release. Code is available at https://github.com/a514514772/hijackgan.
Nowadays, digital facial content manipulation has become ubiquitous and realistic with the success of generative adversarial networks (GANs), making face recognition (FR) systems suffer from unprecedented security concerns. In this paper, we investig
Adversarial examples are known as carefully perturbed images fooling image classifiers. We propose a geometric framework to generate adversarial examples in one of the most challenging black-box settings where the adversary can only generate a small
Face recognition has obtained remarkable progress in recent years due to the great improvement of deep convolutional neural networks (CNNs). However, deep CNNs are vulnerable to adversarial examples, which can cause fateful consequences in real-world
We propose a simple and highly query-efficient black-box adversarial attack named SWITCH, which has a state-of-the-art performance in the score-based setting. SWITCH features a highly efficient and effective utilization of the gradient of a surrogate
We present HandGAN (H-GAN), a cycle-consistent adversarial learning approach implementing multi-scale perceptual discriminators. It is designed to translate synthetic images of hands to the real domain. Synthetic hands provide complete ground-truth a