ﻻ يوجد ملخص باللغة العربية
Janus two-dimensional (2D) materials have attracted much attention due to possessing unique properties caused by their out-of-plane asymmetry, which have been achieved in many 2D families. In this work, the Janus monolayers are predicted in new 2D $mathrm{MA_2Z_4}$ family by means of first-principles calculations, $mathrm{MoSi_2N_4}$ and $mathrm{WSi_2N_4}$ of which have been synthesized in experiment(textcolor[rgb]{0.00,0.00,1.00}{Science 369, 670-674 (2020)}). The predicted $mathrm{MSiGeN_4}$ (M=Mo and W) monolayers exhibit dynamic, thermodynamical and mechanical stability, and they are indirect band-gap semiconductors. The inclusion of spin-orbit coupling (SOC) gives rise to the Rashba-type spin splitting, which is observed in the valence bands, being different from common conduction bands. Calculated results show valley polarization at the edge of the conduction bands due to SOC together with inversion symmetry breaking. It is found that $mathrm{MSiGeN_4}$ (M=Mo and W) monolayers have high electron mobilities. Both in-plane and much weak out-of-plane piezoelectric polarizations can be observed, when a uniaxial strain in the basal plane is applied. The values of piezoelectric strain coefficient $d_{11}$ of the Janus $mathrm{MSiGeN_4}$ (M=Mo and W) monolayers fall between those of the $mathrm{MSi_2N_4}$ (M=Mo and W) and $mathrm{MGe_2N_4}$ (M=Mo and W) monolayers, as expected. It is proved that strain can tune the positions of valence band maximum (VBM) and conduction band minimum (CBM), and enhance the the strength of conduction bands convergence caused by compressive strain. It is also found that tensile biaxial strain can enhance $d_{11}$ of $mathrm{MSiGeN_4}$ (M=Mo and W) monolayers, and the compressive strain can improve the $d_{31}$ (absolute values).
The recently experimentally synthesized monolayer $mathrm{MoSi_2N_4}$ and $mathrm{WSi_2N_4}$ (textcolor[rgb]{0.00,0.00,1.00}{Science 369, 670-674 (2020})) lack inversion symmetry, which allows them to become piezoelectric. In this work, based on ab i
The realization of multifunctional two-dimensional (2D) materials is fundamentally intriguing, such as combination of piezoelectricity with topological insulating phase or ferromagnetism. In this work, a Janus monolayer $mathrm{SrAlGaSe_4}$ is built
Two-dimensional topological insulators and two-dimensional materials with ferroelastic characteristics are intriguing materials and many examples have been reported both experimentally and theoretically. Here, we present the combination of both featu
The septuple-atomic-layer $mathrm{VSi_2P_4}$ with the same structure of experimentally synthesized $mathrm{MoSi_2N_4}$ is predicted to be a spin-gapless semiconductor (SGS). In this work, the biaxial strain is applied to tune electronic properties of
The strong spin-orbit interaction in the organic-inorganic perovskites tied to the incorporation of heavy elements (textit{e.g.} Pb, I) makes these materials interesting for applications in spintronics. Due to a lack of inversion symmetry associated