ﻻ يوجد ملخص باللغة العربية
We use the APOSTLE $Lambda$CDM cosmological hydrodynamical simulations of the Local Group to study the recent accretion of massive satellites into the halo of Milky Way (MW)-sized galaxies. These systems are selected to be close analogues to the Large Magellanic Cloud (LMC), the most massive satellite of the MW. The simulations allow us to address, in a cosmological context, the impact of the Clouds on the MW, including the contribution of Magellanic satellites to the MW satellite population, and the constraints placed on the Galactic potential by the motion of the LMC. We show that LMC-like satellites are twice more common around Local Group-like primaries than around isolated halos of similar mass; these satellites come from large turnaround radii and are on highly eccentric orbits whose velocities at first pericentre are comparable with the primarys escape velocity. This implies $V_{rm esc}^{rm MW} (50 $ kpc$)sim 365$ km/s, a strong constraint on Galactic potential models. LMC analogues contribute about 2 satellites with $M_*>10^5, M_odot$, having thus only a mild impact on the luminous satellite population of their hosts. At first pericentre, LMC-associated satellites are close to the LMC in position and velocity, and are distributed along the LMCs orbital plane. Their orbital angular momenta roughly align with the LMCs, but, interestingly, they may appear to counter-rotate the MW in some cases. These criteria refine earlier estimates of the LMC association of MW satellites: only the SMC, Hydrus1, Car3, Hor1, Tuc4, Ret2 and Phoenix2 are compatible with all criteria. Carina, Grus2, Hor2 and Fornax are less probable associates given their large LMC relative velocity.
We study galaxy formation in sterile neutrino dark matter models that differ signifi- cantly from both cold and from `warm thermal relic models. We use the EAGLE code to carry out hydrodynamic simulations of the evolution of pairs of galaxies chosen
We use the APOSTLE and Auriga cosmological simulations to study the star formation histories (SFHs) of field and satellite dwarf galaxies. Despite sizeable galaxy-to-galaxy scatter, the SFHs of APOSTLE and Auriga dwarfs exhibit robust average trends
Satellite galaxies are commonly used as tracers to measure the line-of-sight velocity dispersion ($sigma_{rm LOS}$) of the dark matter halo associated with their central galaxy, and thereby to estimate the halos mass. Recent observational dispersion
In the context of the concordance cosmology, structure formation in the Universe is the result of the amplification, by gravitational effects, of small perturbations in the primeval density field. This results in the formation of structures known as
We study the properties of two bars formed in fully cosmological hydrodynamical simulations of the formation of Milky Way-mass galaxies. In one case, the bar formed in a system with disc, bulge and halo components and is relatively strong and long, a