ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable refractory lithophile element compositions of planetary building blocks: insights from components of enstatite chondrites

255   0   0.0 ( 0 )
 نشر من قبل Takashi Yoshizaki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Takashi Yoshizaki




اسأل ChatGPT حول البحث

Chondrites are sediments of materials left over from the earliest stage of the solar system history. Based on their undifferentiated nature and less fractionated chemical compositions, chondrites are widely considered to represent the unprocessed building blocks of the terrestrial planets and their embryos. Models of chemical composition of the terrestrial planets generally find chondritic relative abundances of refractory lithophile elements (RLE) in the bulk bodies (constant RLE ratio rule), based on limited variations of RLE ratios among chondritic meteorites and the solar photosphere. Here, we show that ratios of RLE, such as Nb/Ta, Zr/Hf, Sm/Nd and Al/Ti, are fractionated from the solar value in chondrules from enstatite chondrites (EC). The fractionated RLE ratios of individual EC chondrules document different chalcophile affinities of RLE under highly reducing environments and a separation of RLE-bearing sulfides from silicates before and/or during chondrule formation. In contrast, the bulk EC have solar-like RLE ratios, indicating that a physical sorting of silicates and sulfides was negligible before and during the accretion of EC parent bodies. Likewise, if the Earths accretion were dominated by EC-like materials, as supported by multiple isotope systematics, the physical sorting of silicates and sulfides in the accretionary disk should not have occurred among the Earths building blocks. Alternatively, the Earths precursors might have been high-temperature nebular materials that condensed before the RLE fractionation due to precipitation of the RLE-bearing sulfides...Highly reduced planets that have experienced selective removal or accretion of silicates or metal/sulfide phases, such as Mercury, might have fractionated, non-solar bulk RLE ratios.



قيم البحث

اقرأ أيضاً

Geochemical and astronomical evidence demonstrate that planet formation occurred in two spatially and temporally separated reservoirs. The origin of this dichotomy is unknown. We use numerical models to investigate how the evolution of the solar prot oplanetary disk influenced the timing of protoplanet formation and their internal evolution. Migration of the water snow line can generate two distinct bursts of planetesimal formation that sample different source regions. These reservoirs evolve in divergent geophysical modes and develop distinct volatile contents, consistent with constraints from accretion chronology, thermo-chemistry, and the mass divergence of inner and outer Solar System. Our simulations suggest that the compositional fractionation and isotopic dichotomy of the Solar System was initiated by the interplay between disk dynamics, heterogeneous accretion, and internal evolution of forming protoplanets.
115 - Jean Bollard 2017
The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primar y production of chondrules in the early solar system was restricted to the first million years after formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the protoplanetary disk. This is consistent with a primary chondrule formation episode during the early high-mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid formation of planetary objects via chondrule accretion.
The nature and distribution of sulfides within 17 porphyritic chondrules of the Sahara 97096 EH3 enstatite chondrite have been studied by backscattered electron microscopy and electron microprobe in order to investigate the role of gas-melt interacti ons in the chondrule sulfide formation. Troilite (FeS) is systematically present and is the most abundant sulfide within the EH3 chondrite chondrules. It is found either poikilitically enclosed in low-Ca pyroxenes or scattered within the glassy mesostasis. Oldhamite (CaS) and niningerite [(Mg,Fe,Mn)S] are present in about 60% of the chondrules studied. While oldhamite is preferentially present in the mesostasis, niningerite associated with silica is generally observed in contact with troilite and low-Ca pyroxene. The chondrule mesostases contain high abundances of alkali and volatile elements as well as silica. Our data suggest that most of the sulfides found in EH3 chondrite chondrules are magmatic minerals that formed after the dissolution of S from a volatile-rich gaseous environment into the molten chondrules. Troilite formation occurred via sulfur solubility within Fe-poor chondrule melts followed by sulfide saturation, which causes an immiscible iron sulfide liquid to separate from the silicate melt. The FeS saturation started at the same time as or prior to the crystallization of low-Ca pyroxene during the high temperature chondrule forming event(s). Protracted gas-melt interactions under high partial pressures of S and SiO led to the formation of niningerite-silica associations via destabilization of the previously formed FeS and low-Ca pyroxene. We also propose that formation of the oldhamite occurred via the sulfide saturation of Fe-poor chondrule melts at moderate S concentration due to the high degree of polymerization and the high Na-content of the chondrule melts, which allowed the activity of CaO in the melt to be enhanced.
Carbonaceous chondrites (CCs) may have been the carriers of water, volatile and moderately volatile elements to Earth. Investigating the abundances of these elements, their relative volatility, and isotopes of state-change tracer elements such as Zn, and linking these observations to water contents, provide vital information on the processes that govern the abundances and isotopic signatures of these species in CCs and other planetary bodies. Here we report Zn isotopic data for 28 CCs (20 CM, 6 CR, 1 C2-ung, and 1 CV3), as well as trace element data for Zn, In, Sn, Tl, Pb, and Bi in 16 samples (8 CM, 6 CR, 1 C2-ung, and 1 CV3), that display a range of elemental abundances from case-normative to intensely depleted. We use these data, water content data from literature and Zn isotopes to investigate volatile depletions and to discern between closed and open system heating. Trace element data have been used to construct relative volatility scales among the elements for the CM and CR chondrites. From least volatile to most, the scale in CM chondrites is Pb-Sn-Bi-In-Zn-Tl, and for CR chondrites it is Tl-Zn-Sn-Pb-Bi-In. These observations suggest that heated CM and CR chondrites underwent volatile loss under different conditions to one another and to that of the solar nebula, e.g. differing oxygen fugacities. Furthermore, the most water and volatile depleted samples are highly enriched in the heavy isotopes of Zn. Taken together, these lines of evidence strongly indicate that heated CM and CR chondrites incurred open system heating, stripping them of water and volatiles concomitantly, during post-accretionary shock impact(s).
Planets form and obtain their compositions in disks of gas and dust around young stars. The chemical compositions of these planet-forming disks regulate all aspects of planetary compositions from bulk elemental inventories to access to water and reac tive organics, i.e. a planets hospitality to life and its chemical origins. Disk chemical structures are in their turn governed by a combination of {it in situ} chemical processes, and inheritance of molecules from the preceding evolutionary stages of the star formation process. In this review we present our current understanding of the chemical processes active in pre- and protostellar environments that set the initial conditions for disks, and the disk chemical processes that evolve the chemical conditions during the first million years of planet formation. We review recent observational, laboratory and theoretical discoveries that have led to the present view of the chemical environment within which planets form, and their effects on the compositions of nascent planetary systems. We also discuss the many unknowns that remain and outline some possible pathways to addressing them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا