ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent advances on quantum key distribution overcoming the linear secret key capacity bound

97   0   0.0 ( 0 )
 نشر من قبل Yingqiu Mao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A crucial goal for quantum key distribution (QKD) is to transmit unconditionally secure keys over long distances. Previous studies show that the key rate of point-to-point QKD is limited by a secret key rate capacity bound, and higher key rates would require quantum repeaters. In 2018, the seminal twin-field (TF) QKD protocol was proposed to provide a remarkable solution to overcoming the linear secret key capacity bound. This article presents an up-to-date survey on recent developments in this area, including the security proofs of phase-matching QKD and other TF-QKD type protocols, the theoretical examinations of these protocols under realistic conditions, and the recent experimental demonstrations.



قيم البحث

اقرأ أيضاً

Quantum communications promise to revolutionise the way information is exchanged and protected. Unlike their classical counterpart, they are based on dim optical pulses that cannot be amplified by conventional optical repeaters. Consequently they are heavily impaired by propagation channel losses, which confine their transmission rate and range below a theoretical limit known as repeaterless secret key capacity. Overcoming this limit with todays technology was believed to be impossible until the recent proposal of a scheme that uses phase-coherent optical signals and an auxiliary measuring station to distribute quantum information. Here we experimentally demonstrate such a scheme for the first time and over significant channel losses, in excess of 90 dB. In the high loss regime, the resulting secure key rate exceeds the repeaterless secret key capacity, a result never achieved before. This represents a major step in promoting quantum communications as a dependable resource in todays world.
Quantum key distribution (QKD offers a long-term solution to establish information-theoretically secure keys between two distant users. In practice, with a careful characterization of quantum sources and the decoy-state method, measure-device-indepen dent quantum key distribution (MDI-QKD) provides secure key distribution. While short-distance fibre-based QKD has already been available for real-life implementation, the bottleneck of practical QKD lies on the limited transmission distance. Due to photon losses in transmission, it was believed that the key generation rate is bounded by a linear function of the channel transmittance, $O(eta)$, without a quantum repeater, which puts an upper bound on the maximal secure transmission distance. Interestingly, a new phase-encoding MDI-QKD scheme, named twin-field QKD, has been suggested to beat the linear bound, while another variant, named phase-matching quantum key distribution (PM-QKD), has been proven to have a quadratic key-rate improvement, $O(sqrt{eta})$. In reality, however, the intrinsic optical mode mismatch of independent lasers, accompanied by phase fluctuation and drift, impedes the successful experimental implementation of the new schemes. Here, we solve this problem with the assistance of the laser injection technique and the phase post-compensation method. In the experiment, the key rate surpasses the linear key-rate bound via 302 km and 402 km commercial-fibre channels, achieving a key rate over 4 orders of magnitude higher than the existing results in literature. Furthermore, with a 502 km ultralow-loss fibre, our system yields a secret key rate of 0.118 bps. We expect this new type of QKD schemes to become a new standard for future QKD.
Distribution and distillation of entanglement over quantum networks is a basic task for Quantum Internet applications. A fundamental question is then to determine the ultimate performance of entanglement distribution over a given network. Although th is question has been extensively explored for bipartite entanglement-distribution scenarios, less is known about multipartite entanglement distribution. Here we establish the fundamental limit of distributing multipartite entanglement, in the form of GHZ states, over a quantum network. In particular, we determine the multipartite entanglement distribution capacity of a quantum network, in which the nodes are connected through lossy bosonic quantum channels. This setting corresponds to a practical quantum network consisting of optical links. The result is also applicable to the distribution of multipartite secret key, known as common key, for both a fully quantum network and trusted-node based quantum key distribution network. Our results set a general benchmark for designing a network topology and network quantum repeaters (or key relay in trusted nodes) to realize efficient GHZ state/common key distribution in both fully quantum and trusted-node-based networks. We show an example of how to overcome this limit by introducing a network quantum repeater. Our result follows from an upper bound on distillable GHZ entanglement introduced here, called the recursive-cut-and-merge bound, which constitutes major progress on a longstanding fundamental problem in multipartite entanglement theory. This bound allows for determining the distillable GHZ entanglement for a class of states consisting of products of bipartite pure states.
Device-independent quantum key distribution (DIQKD) exploits the violation of a Bell inequality to extract secure key even if the users devices are untrusted. Currently, all DIQKD protocols suffer from the secret key capacity bound, i.e., the secret key rate scales linearly with the transmittance of two users. Here we propose a heralded DIQKD scheme based on entangled coherent states to improve entangling rates whereby long-distance entanglement is created by single-photon-type interference. The secret key rate of our scheme can significantly outperform the traditional two-photon-type Bell-state measurement scheme and, importantly, surpass the above capacity bound. Our protocol therefore is an important step towards a realization of DIQKD and can be a promising candidate scheme for entanglement swapping in future quantum internet.
165 - Tabish Qureshi 2013
A new scheme of Quantum Key Distribution is proposed using three entangled particles in a GHZ state. Alice holds a 3-particle source and sends two particles to Bob, keeping one with herself. Bob uses one particle to generate a secure key, and the oth er to generate a master-key. This scheme should prove to be harder to break in non-ideal situations as compared to the standard protocols BB84 and Eckert. The scheme uses the concept of Quantum Disentanglement Eraser. Extension to multi-partite scheme has also been investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا