ﻻ يوجد ملخص باللغة العربية
We present a deep machine learning algorithm to extract crystal field (CF) Stevens parameters from thermodynamic data of rare-earth magnetic materials. The algorithm employs a two-dimensional convolutional neural network (CNN) that is trained on magnetization, magnetic susceptibility and specific heat data that is calculated theoretically within the single-ion approximation and further processed using a standard wavelet transformation. We apply the method to crystal fields of cubic, hexagonal and tetragonal symmetry and for both integer and half-integer total angular momentum values $J$ of the ground state multiplet. We evaluate its performance on both theoretically generated synthetic and previously published experimental data on CeAgSb$_2$, PrAgSb$_2$ and PrMg$_2$Cu$_9$, and find that it can reliably and accurately extract the CF parameters for all site symmetries and values of $J$ considered. This demonstrates that CNNs provide an unbiased approach to extracting CF parameters that avoids tedious multi-parameter fitting procedures.
We consider a monolayer of graphene under uniaxial, tensile strain and simulate Bloch oscillations for different electric field orientations parallel to the plane of the monolayer using several values of the components of the uniform strain tensor, b
Monte Carlo (MC) simulations are essential computational approaches with widespread use throughout all areas of science. We present a method for accelerating lattice MC simulations using fully connected and convolutional artificial neural networks th
Automatic heart sound abnormality detection can play a vital role in the early diagnosis of heart diseases, particularly in low-resource settings. The state-of-the-art algorithms for this task utilize a set of Finite Impulse Response (FIR) band-pass
A machine learning technique with two-dimension convolutional neural network is proposed for detecting exoplanet transits. To test this new method, five different types of deep learning models with or without folding are constructed and studied. The
Correlated many-body problems ubiquitously appear in various fields of physics such as condensed matter physics, nuclear physics, and statistical physics. However, due to the interplay of the large number of degrees of freedom, it is generically impo