ﻻ يوجد ملخص باللغة العربية
The bubble wall velocity is essential for the phase transition dynamics in the early universe and its cosmological implications, such as the energy budget of phase transition gravitational wave and electroweak baryogenesis. One key factor to determine the wall velocity is the collision term that quantifies the interactions between the massive particles in the plasma and the bubble wall. We improve the calculations of the collision term beyond the leading-log approximation, and further obtain more precise bubble wall velocity for a representative effective model.
We analyze Higgs condensate bubble expansion during a first-order electroweak phase transition in the early Universe. The interaction of particles with the bubble wall can be accompanied by the emission of multiple soft gauge bosons. When computed at
Using the holographic correspondence as a tool, we determine the steady-state velocity of expanding vacuum bubbles nucleated within chiral finite temperature first-order phase transitions occurring in strongly-coupled large $N$ QCD-like models. We pr
We discuss aspects of poor infrared behaviour of the perturbation expansion for the effective potential of the Higgs mode near the electroweak phase transition, and enlarge on the discovery that higher order effects weaken the transition. In addition
Based on the analogy between the Nambu--Jona-Lasinio model of chiral symmetry breaking and the BCS theory of superconductivity, we investigate the effect of $bar q q$ pair fluctuations on the chiral phase transition. We include uncondensed $bar q q$
We present results for the bubble wall velocity and bubble wall thickness during a cosmological first-order phase transition in a condensed form. Our results are for minimal extensions of the Standard Model but in principle are applicable to a much b