ﻻ يوجد ملخص باللغة العربية
We study the structure and compute the stable rank of C*-algebras of finite higher-rank graphs. We completely determine the stable rank of the C*-algebra when the k-graph either contains no cycle with an entrance, or is cofinal. We also determine exactly which finite, locally convex k-graphs yield unital stably finite C*-algebras. We give several examples to illustrate our results.
In this paper we define the notion of monic representation for the $C^*$-algebras of finite higher-rank graphs with no sources, and undertake a comprehensive study of them. Monic representations are the representations that, when restricted to the co
Let $A$ be a unital separable simple ${cal Z}$-stable C*-algebra which has rational tracial rank at most one and let $uin U_0(A),$ the connected component of the unitary group of $A.$ We show that, for any $epsilon>0,$ there exists a self-adjoint ele
We study purely atomic representations of C*-algebras associated to row-finite and source-free higher-rank graphs. We describe when purely atomic representations are unitarily equivalent and we give necessary and sufficient conditions for a purely at
We study dimension theory for the $C^*$-algebras of row-finite $k$-graphs with no sources. We establish that strong aperiodicity - the higher-rank analogue of condition (K) - for a $k$-graph is necessary and sufficient for the associated $C^*$-algebr
A class of $C^*$-algebras, to be called those of generalized tracial rank one, is introduced, and classified by the Elliott invariant. A second class of unital simple separable amenable $C^*$-algebras, those whose tensor products with UHF-algebras of