ترغب بنشر مسار تعليمي؟ اضغط هنا

Compatibility of Carnot efficiency with finite power in an underdamped Brownian Carnot cycle in small temperature-difference regime

105   0   0.0 ( 0 )
 نشر من قبل Kosuke Miura
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the possibility of achieving the Carnot efficiency in a finite-power underdamped Brownian Carnot cycle. Recently, it was reported that the Carnot efficiency is achievable in a general class of finite-power Carnot cycles in the vanishing limit of the relaxation times. Thus, it may be interesting to clarify how the efficiency and power depend on the relaxation times by using a specific model. By evaluating the heat-leakage effect intrinsic in the underdamped dynamics with the instantaneous adiabatic processes, we demonstrate that the compatibility of the Carnot efficiency and finite power is achieved in the vanishing limit of the relaxation times in the small temperature-difference regime. Furthermore, we show that this result is consistent with a trade-off relation between power and efficiency by explicitly deriving the relation of our cycle in terms of the relaxation times.



قيم البحث

اقرأ أيضاً

The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors and some artificial micro -engines operate. As described by stochastic thermodynamics, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit. Despite its potential relevance for the development of a thermodynamics of small systems, an experimental study of microscopic Carnot engines is still lacking. Here we report on an experimental realization of a Carnot engine with a single optically trapped Brownian particle as working substance. We present an exhaustive study of the energetics of the engine and analyze the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency -an insight that could inspire novel strategies in the design of efficient nano-motors.
132 - Tobias Denzler , Eric Lutz 2020
Stability is an important property of small thermal machines with fluctuating power output. We here consider a finite-time quantum Carnot engine based on a degenerate multilevel system and study the influence of its finite Hilbert space structure on its stability. We optimize in particular its relative work fluctuations with respect to level degeneracy and level number. We find that its optimal performance may surpass those of nondegenerate two-level engines or harmonic oscillator motors. Our results show how to realize high-performance, high-stability cyclic quantum heat engines.
We study the efficiency at maximum power, $eta^*$, of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures $T_h$ and $T_c$, respectively. For engines reaching Carnot efficiency $eta_C=1-T_c/T_h$ in the rever sible limit (long cycle time, zero dissipation), we find in the limit of low dissipation that $eta^*$ is bounded from above by $eta_C/(2-eta_C)$ and from below by $eta_C/2$. These bounds are reached when the ratio of the dissipation during the cold and hot isothermal phases tend respectively to zero or infinity. For symmetric dissipation (ratio one) the Curzon-Ahlborn efficiency $eta_{CA}=1-sqrt{T_c/T_h}$ is recovered.
172 - H. T. Quan 2013
We study the maximum efficiency of a Carnot cycle heat engine based on a small system. It is revealed that due to the finiteness of the system, irreversibility may arise when the working substance contacts with a heat bath. As a result, there is a wo rking-substance-dependent correction to the usual Carnot efficiency, which is valid only when the working substance is in the thermodynamic limit. We derives a general and simple expression for the maximum efficiency of a Carnot cycle heat engine in terms of the relative entropy. This maximum efficiency approaches the usual Carnot efficiency asymptotically when the size of the working substance increases to the thermodynamic limit. Our study extends the Carnots result to cases with arbitrary size working substance and demonstrates the subtlety of thermodynamics in small systems.
We determine the statistics of work in isothermal volume changes of a classical ideal gas consisting of a single particle. Combining our results with the findings of Lua and Grosberg [J. Chem. Phys. B 109, 6805 (2005)] on adiabatic expansions and com pressions we then analyze the joint probability distribution of heat and work for a microscopic, non-equilibrium Carnot cycle and determine its efficiency at maximum power.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا