ترغب بنشر مسار تعليمي؟ اضغط هنا

MetaSensing: Intelligent Metasurface Assisted RF 3D Sensing by Deep Reinforcement Learning

289   0   0.0 ( 0 )
 نشر من قبل Jingzhi Hu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Using RF signals for wireless sensing has gained increasing attention. However, due to the unwanted multi-path fading in uncontrollable radio environments, the accuracy of RF sensing is limited. Instead of passively adapting to the environment, in this paper, we consider the scenario where an intelligent metasurface is deployed for sensing the existence and locations of 3D objects. By programming its beamformer patterns, the metasurface can provide desirable propagation properties. However, achieving a high sensing accuracy is challenging, since it requires the joint optimization of the beamformer patterns and mapping of the received signals to the sensed outcome. To tackle this challenge, we formulate an optimization problem for minimizing the cross-entropy loss of the sensing outcome, and propose a deep reinforcement learning algorithm to jointly compute the optimal beamformer patterns and the mapping of the received signals. Simulation results verify the effectiveness of the proposed algorithm and show how the sizes of the metasurface and the target space influence the sensing accuracy.



قيم البحث

اقرأ أيضاً

In this paper, we propose a deep reinforcement learning (DRL) approach for solving the optimisation problem of the networks sum-rate in device-to-device (D2D) communications supported by an intelligent reflecting surface (IRS). The IRS is deployed to mitigate the interference and enhance the signal between the D2D transmitter and the associated D2D receiver. Our objective is to jointly optimise the transmit power at the D2D transmitter and the phase shift matrix at the IRS to maximise the network sum-rate. We formulate a Markov decision process and then propose the proximal policy optimisation for solving the maximisation game. Simulation results show impressive performance in terms of the achievable rate and processing time.
In this paper, we consider a wireless uplink transmission scenario in which an unmanned aerial vehicle (UAV) serves as an aerial base station collecting data from ground users. To optimize the expected sum uplink transmit rate without any prior knowl edge of ground users (e.g., locations, channel state information and transmit power), the trajectory planning problem is optimized via the quantum-inspired reinforcement learning (QiRL) approach. Specifically, the QiRL method adopts novel probabilistic action selection policy and new reinforcement strategy, which are inspired by the collapse phenomenon and amplitude amplification in quantum computation theory, respectively. Numerical results demonstrate that the proposed QiRL solution can offer natural balancing between exploration and exploitation via ranking collapse probabilities of possible actions, compared to the traditional reinforcement learning approaches which are highly dependent on tuned exploration parameters.
Next generation wireless networks are expected to be extremely complex due to their massive heterogeneity in terms of the types of network architectures they incorporate, the types and numbers of smart IoT devices they serve, and the types of emergin g applications they support. In such large-scale and heterogeneous networks (HetNets), radio resource allocation and management (RRAM) becomes one of the major challenges encountered during system design and deployment. In this context, emerging Deep Reinforcement Learning (DRL) techniques are expected to be one of the main enabling technologies to address the RRAM in future wireless HetNets. In this paper, we conduct a systematic in-depth, and comprehensive survey of the applications of DRL techniques in RRAM for next generation wireless networks. Towards this, we first overview the existing traditional RRAM methods and identify their limitations that motivate the use of DRL techniques in RRAM. Then, we provide a comprehensive review of the most widely used DRL algorithms to address RRAM problems, including the value- and policy-based algorithms. The advantages, limitations, and use-cases for each algorithm are provided. We then conduct a comprehensive and in-depth literature review and classify existing related works based on both the radio resources they are addressing and the type of wireless networks they are investigating. To this end, we carefully identify the types of DRL algorithms utilized in each related work, the elements of these algorithms, and the main findings of each related work. Finally, we highlight important open challenges and provide insights into several future research directions in the context of DRL-based RRAM. This survey is intentionally designed to guide and stimulate more research endeavors towards building efficient and fine-grained DRL-based RRAM schemes for future wireless networks.
Unmanned aerial vehicles (UAVs) are emerging in commercial spaces and will support many applications and services, such as smart agriculture, dynamic network deployment, and network coverage extension, surveillance and security. The unmanned aircraft system (UAS) traffic management (UTM) provides a framework for safe UAV operation integrating UAV controllers and central data bases via a communications network. This paper discusses the challenges and opportunities for machine learning (ML) for effectively providing critical UTM services. We introduce the four pillars of UTM---operation planning, situational awareness, status and advisors and security---and discuss the main services, specific opportunities for ML and the ongoing research. We conclude that the multi-faceted operating environment and operational parameters will benefit from collected data and data-driven algorithms, as well as online learning to face new UAV operation situations.
Network dismantling aims to degrade the connectivity of a network by removing an optimal set of nodes and has been widely adopted in many real-world applications such as epidemic control and rumor containment. However, conventional methods usually fo cus on simple network modeling with only pairwise interactions, while group-wise interactions modeled by hypernetwork are ubiquitous and critical. In this work, we formulate the hypernetwork dismantling problem as a node sequence decision problem and propose a deep reinforcement learning (DRL)-based hypernetwork dismantling framework. Besides, we design a novel inductive hypernetwork embedding method to ensure the transferability to various real-world hypernetworks. Generally, our framework builds an agent. It first generates small-scale synthetic hypernetworks and embeds the nodes and hypernetworks into a low dimensional vector space to represent the action and state space in DRL, respectively. Then trial-and-error dismantling tasks are conducted by the agent on these synthetic hypernetworks, and the dismantling strategy is continuously optimized. Finally, the well-optimized strategy is applied to real-world hypernetwork dismantling tasks. Experimental results on five real-world hypernetworks demonstrate the effectiveness of our proposed framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا