ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Curves for Drug Response Prediction in Cancer Cell Lines

86   0   0.0 ( 0 )
 نشر من قبل Alexander Partin
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the size of cell line drug sensitivity data, researchers have been developing machine learning (ML) models for predicting drug response to advance cancer treatment. As drug sensitivity studies continue generating data, a common question is whether the proposed predictors can further improve the generalization performance with more training data. We utilize empirical learning curves for evaluating and comparing the data scaling properties of two neural networks (NNs) and two gradient boosting decision tree (GBDT) models trained on four drug screening datasets. The learning curves are accurately fitted to a power law model, providing a framework for assessing the data scaling behavior of these predictors. The curves demonstrate that no single model dominates in terms of prediction performance across all datasets and training sizes, suggesting that the shape of these curves depends on the unique model-dataset pair. The multi-input NN (mNN), in which gene expressions and molecular drug descriptors are input into separate subnetworks, outperforms a single-input NN (sNN), where the cell and drug features are concatenated for the input layer. In contrast, a GBDT with hyperparameter tuning exhibits superior performance as compared with both NNs at the lower range of training sizes for two of the datasets, whereas the mNN performs better at the higher range of training sizes. Moreover, the trajectory of the curves suggests that increasing the sample size is expected to further improve prediction scores of both NNs. These observations demonstrate the benefit of using learning curves to evaluate predictors, providing a broader perspective on the overall data scaling characteristics. The fitted power law curves provide a forward-looking performance metric and can serve as a co-design tool to guide experimental biologists and computational scientists in the design of future experiments.



قيم البحث

اقرأ أيضاً

To enable personalized cancer treatment, machine learning models have been developed to predict drug response as a function of tumor and drug features. However, most algorithm development efforts have relied on cross validation within a single study to assess model accuracy. While an essential first step, cross validation within a biological data set typically provides an overly optimistic estimate of the prediction performance on independent test sets. To provide a more rigorous assessment of model generalizability between different studies, we use machine learning to analyze five publicly available cell line-based data sets: NCI60, CTRP, GDSC, CCLE and gCSI. Based on observed experimental variability across studies, we explore estimates of prediction upper bounds. We report performance results of a variety of machine learning models, with a multitasking deep neural network achieving the best cross-study generalizability. By multiple measures, models trained on CTRP yield the most accurate predictions on the remaining testing data, and gCSI is the most predictable among the cell line data sets included in this study. With these experiments and further simulations on partial data, two lessons emerge: (1) differences in viability assays can limit model generalizability across studies, and (2) drug diversity, more than tumor diversity, is crucial for raising model generalizability in preclinical screening.
Cancer is a primary cause of human death, but discovering drugs and tailoring cancer therapies are expensive and time-consuming. We seek to facilitate the discovery of new drugs and treatment strategies for cancer using variational autoencoders (VAEs ) and multi-layer perceptrons (MLPs) to predict anti-cancer drug responses. Our model takes as input gene expression data of cancer cell lines and anti-cancer drug molecular data and encodes these data with our {sc {GeneVae}} model, which is an ordinary VAE model, and a rectified junction tree variational autoencoder ({sc JTVae}) model, respectively. A multi-layer perceptron processes these encoded features to produce a final prediction. Our tests show our system attains a high average coefficient of determination ($R^{2} = 0.83$) in predicting drug responses for breast cancer cell lines and an average $R^{2} = 0.845$ for pan-cancer cell lines. Additionally, we show that our model can generates effective drug compounds not previously used for specific cancer cell lines.
Accurately predicting the binding affinity between drugs and proteins is an essential step for computational drug discovery. Since graph neural networks (GNNs) have demonstrated remarkable success in various graph-related tasks, GNNs have been consid ered as a promising tool to improve the binding affinity prediction in recent years. However, most of the existing GNN architectures can only encode the topological graph structure of drugs and proteins without considering the relative spatial information among their atoms. Whereas, different from other graph datasets such as social networks and commonsense knowledge graphs, the relative spatial position and chemical bonds among atoms have significant impacts on the binding affinity. To this end, in this paper, we propose a diStance-aware Molecule graph Attention Network (S-MAN) tailored to drug-target binding affinity prediction. As a dedicated solution, we first propose a position encoding mechanism to integrate the topological structure and spatial position information into the constructed pocket-ligand graph. Moreover, we propose a novel edge-node hierarchical attentive aggregation structure which has edge-level aggregation and node-level aggregation. The hierarchical attentive aggregation can capture spatial dependencies among atoms, as well as fuse the position-enhanced information with the capability of discriminating multiple spatial relations among atoms. Finally, we conduct extensive experiments on two standard datasets to demonstrate the effectiveness of S-MAN.
Properties of molecules are indicative of their functions and thus are useful in many applications. With the advances of deep learning methods, computational approaches for predicting molecular properties are gaining increasing momentum. However, the re lacks customized and advanced methods and comprehensive tools for this task currently. Here we develop a suite of comprehensive machine learning methods and tools spanning different computational models, molecular representations, and loss functions for molecular property prediction and drug discovery. Specifically, we represent molecules as both graphs and sequences. Built on these representations, we develop novel deep models for learning from molecular graphs and sequences. In order to learn effectively from highly imbalanced datasets, we develop advanced loss functions that optimize areas under precision-recall curves. Altogether, our work not only serves as a comprehensive tool, but also contributes towards developing novel and advanced graph and sequence learning methodologies. Results on both online and offline antibiotics discovery and molecular property prediction tasks show that our methods achieve consistent improvements over prior methods. In particular, our methods achieve #1 ranking in terms of both ROC-AUC and PRC-AUC on the AI Cures Open Challenge for drug discovery related to COVID-19. Our software is released as part of the MoleculeX library under AdvProp.
Characterization of breast parenchyma on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a challenging task owing to the complexity of underlying tissue structures. Current quantitative approaches, including radiomics and deep learn ing models, do not explicitly capture the complex and subtle parenchymal structures, such as fibroglandular tissue. In this paper, we propose a novel method to direct a neural networks attention to a dedicated set of voxels surrounding biologically relevant tissue structures. By extracting multi-dimensional topological structures with high saliency, we build a topology-derived biomarker, TopoTxR. We demonstrate the efficacy of TopoTxR in predicting response to neoadjuvant chemotherapy in breast cancer. Our qualitative and quantitative results suggest differential topological behavior of breast tissue on treatment-naive imaging, in patients who respond favorably to therapy versus those who do not.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا