ﻻ يوجد ملخص باللغة العربية
Least squares Monte Carlo methods are a popular numerical approximation method for solving stochastic control problems. Based on dynamic programming, their key feature is the approximation of the conditional expectation of future rewards by linear least squares regression. Hence, the choice of basis functions is crucial for the accuracy of the method. Earlier work by some of us [Belomestny, Schoenmakers, Spokoiny, Zharkynbay. Commun.~Math.~Sci., 18(1):109-121, 2020] proposes to emph{reinforce} the basis functions in the case of optimal stopping problems by already computed value functions for later times, thereby considerably improving the accuracy with limited additional computational cost. We extend the reinforced regression method to a general class of stochastic control problems, while considerably improving the methods efficiency, as demonstrated by substantial numerical examples as well as theoretical analysis.
This work discusses the finite element discretization of an optimal control problem for the linear wave equation with time-dependent controls of bounded variation. The main focus lies on the convergence analysis of the discretization method. The stat
We present a data-driven point of view for rare events, which represent conformational transitions in biochemical reactions modeled by over-damped Langevin dynamics on manifolds in high dimensions. We first reinterpret the transition state theory and
Two major problems in modern cities are air contamination and road congestion. They are closely related and present a similar origin: traffic flow. To face these problems, local governments impose traffic restrictions to prevent the entry of vehicles
In PDE-constrained optimization, proper orthogonal decomposition (POD) provides a surrogate model of a (potentially expensive) PDE discretization, on which optimization iterations are executed. Because POD models usually provide good approximation qu
We investigate the problem of optimal transport in the so-called Kantorovich form, i.e. given two Radon measures on two compact sets, we seek an optimal transport plan which is another Radon measure on the product of the sets that has these two measu