ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dynamics of a High Mach Number Quasi-Perpendicular Shock: MMS Observations

72   0   0.0 ( 0 )
 نشر من قبل Hadi Madanian
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Shock parameters at Earths bow shock in rare instances can approach the Mach numbers predicted at supernova remnants. We present our analysis of a high Alfven Mach number ($M_A= 27$) shock utilizing multipoint measurements from the Magnetospheric Multiscale (MMS) spacecraft during a crossing of Earths quasi-perpendicular bow shock. We find that the shock dynamics are mostly driven by reflected ions, perturbations that they generate, and nonlinear amplification of the perturbations. Our analyses show that reflected ions create modest magnetic enhancements upstream of the shock which evolve in a nonlinear manner as they traverse the shock foot. They can transform into proto-shocks that propagate at small angles to the magnetic field and towards the bow shock. The nonstationary bow shock shows signatures of both reformation and surface ripples. Our observations indicate that although shock reformation occurs, the main shock layer never disappears. These observations are at high plasma $beta$, a parameter regime which has not been well explored by numerical models.



قيم البحث

اقرأ أيضاً

We investigate ion-scale kinetic plasma instabilities at the collisionless shock using linear theory and nonlinear Particle-in-Cell (PIC) simulations. We focus on the Alfven-ion-cyclotron (AIC), mirror, and Weibel instabilities, which are all driven unstable by the effective temperature anisotropy induced by the shock-reflected ions within the transition layer of a strictly perpendicular shock. We conduct linear dispersion analysis with a homogeneous plasma model to mimic the shock transition layer by adopting a ring distribution with finite thermal spread to represent the velocity distribution of the reflected ions. We find that, for wave propagation parallel to the ambient magnetic field, the AIC instability at lower Alfven Mach numbers tends to transition to the Weibel instability at higher Alfven Mach numbers. The instability property is, however, also strongly affected by the sound Mach number. We conclude that the instability at a strong shock with Alfven and sound Mach numbers both in excess of $sim 20{rm -}40$ may be considered as Weibel-like in the sense that the reflected ions behave essentially unmagnetized. Two-dimensional PIC simulations confirm the linear theory and find that, with typical parameters of young supernova remnant shocks, the ring distribution model produces magnetic fluctuations of the order of the background magnetic field, which is smaller than those observed in previous PIC simulations for Weibel-dominated shocks. This indicates that the assumption of the gyrotropic reflected ion distribution may not be adequate to quantitatively predict nonlinear behaviors of the dynamics in high Mach number shocks.
Using the field-particle correlation technique, we examine the particle energization in a 1D-2V continuum Vlasov--Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field-particle correlation technique with t he high fidelity representation of the particle distribution function provided by a direct discretization of the Vlasov equation allows us to ascertain the details of the exchange of energy between the electromagnetic fields and the particles in phase space. We identify the velocity-space signatures of shock-drift acceleration of the ions and adiabatic heating of the electrons due to the perpendicular collisionless shock by constructing a simplified model with the minimum ingredients necessary to produce the observed energization signatures in the self-consistent Vlasov-Maxwell simulation. We are thus able to completely characterize the energy transfer in the perpendicular collisionless shock considered here and provide predictions for the application of the field-particle correlation technique to spacecraft measurements of collisionless shocks.
Collisionless shocks play an important role in space and astrophysical plasmas by irreversibly converting the energy of the incoming supersonic plasma flows into other forms, including plasma heat, particle acceleration, and electromagnetic field ene rgy. Here we present the application of the field-particle correlation technique to an idealized perpendicular magnetized collisionless shock to understand the transfer of energy from the incoming flow into ion and electron energy through the structure of the shock. The connection between a Lagrangian perspective following particle trajectories, and an Eulerian perspective observing the net energization of the distribution of particles, illuminates the energy transfer mechanisms. Using the field-particle correlation analysis, we identify the velocity-space signature of shock-drift acceleration of the ions in the shock foot, as well as the velocity-space signature of adiabatic electron heating through the shock ramp.
142 - H. Hietala 2009
The downstream region of a collisionless quasi-parallel shock is structured containing bulk flows with high kinetic energy density from a previously unidentified source. We present Cluster multi-spacecraft measurements of this type of supermagnetoson ic jet as well as of a weak secondary shock front within the sheath, that allow us to propose the following generation mechanism for the jets: The local curvature variations inherent to quasi-parallel shocks can create fast, deflected jets accompanied by density variations in the downstream region. If the speed of the jet is super(magneto)sonic in the reference frame of the obstacle, a second shock front forms in the sheath closer to the obstacle. Our results can be applied to collisionless quasi-parallel shocks in many plasma environments.
The formation of unmagnetized electrostatic shock-like structures with a high Mach number is examined with one- and two-dimensional particle-in-cell (PIC) simulations. The structures are generated through the collision of two identical plasma clouds, which consist of equally hot electrons and ions with a mass ratio of 250. The Mach number of the collision speed with respect to the initial ion acoustic speed of the plasma is set to 4.6. This high Mach number delays the formation of such structures by tens of inverse ion plasma frequencies. A pair of stable shock-like structures is observed after this time in the 1D simulation, which gradually evolve into electrostatic shocks. The ion acoustic instability, which can develop in the 2D simulation but not in the 1D one, competes with the nonlinear process that gives rise to these structures. The oblique ion acoustic waves fragment their electric field. The transition layer, across which the bulk of the ions change their speed, widens and their speed change is reduced. Double layer-shock hybrid structures develop.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا